
Testing and Benchmarking

Deploy
 Configure

Test

Benchmark

Deploy
 Configure

Test

Benchmark

Integration Tests

Deploy
 Configure

Test

Benchmark

Benchmarking

Non-Functional (NF) Tests

•  Wikipedia:

“a non-functional requirement is one that specifies
criteria that can be used to judge the qualities of a
system, rather than specific behaviors”

•  For example:

– scalability, performance, reliability, etc.

•  Difficulty: qualities are subjective

– Need to figure how to quantify them so we

can objectively define validation criteria

One Possible Approach

•  Gather performance metrics

•  Test assertions over measurement data

Deploy
 Configure

Test

Benchmark

One Possible Approach

•  Define tests over benchmark output data

•  Validate these tests in the same way that

QA is done (e.g. in teuthology)

Deploy
 Configure

Test

Benchmark

Challenges

1.  Hardware non-determinism

– Docker (cgroups’ blkio/net_cls subsystems)

2.  Need a way to specify tests

– validation language (aver project @ UCSC)

- Log file
- CSV
- RDBMS
- TSDB
- ...

for
 cluster_size = *

 expect
 ceph >= (raw * 0.9)
when
 network not saturated

Implementing NF Tests for Ceph

1.  Deploy Ceph on Docker

– configure cgroups dynamically

2.  Run Ceph benchmarks

– radosbench initially

3.  Validate assertions over output

– hook aver

+ Deploy/Configure (via Chef/Ansible)

+ Tests

 - No Benchmarking

 - No Docker

Deploy
 Configure

Test

Benchmark

Teuthology

Alternative 1

+ Configure – Custom via ssh

+ Benchmark – Pluggable (radosbench, cosbench, etc.)

+ Small codebase

 - No Docker

 - No Deployment

 - No Testing

Deploy
 Configure

Test

Benchmark

Alternative 2

Our Plan (So Far)

1.  Add docker task to teuthology

– Leverage maestro-ng

2.  Using the docker task, deploy Ceph

– Adding the ability to configure cgroups

3.  Modify ceph-qa-suite/radosbench task

– Need to provide access to the bench output

4.  Create aver task in teuthology (aver wrapper)

– Check validations against benchmark output data

5.  Specify validation statements

–  scalability, availability, performance, etc.

