

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Ceph documentation

Welcome to Ceph

Ceph uniquely delivers object, block, and file storage in one unified
system. Ceph is highly reliable, easy to manage, and free. The power of Ceph
can transform your company’s IT infrastructure and your ability to manage vast
amounts of data. Ceph delivers extraordinary scalability–thousands of clients
accessing petabytes to exabytes of data. Ceph leverages commodity hardware and
intelligent daemons to accommodate large numbers of storage hosts, which
communicate with each other to replicate data, and redistribute data
dynamically. Ceph’s cluster of monitors oversees the hosts in the Ceph storage
cluster to ensure that the storage hosts are running smoothly.

[image: _images/stack.png]

 Copyright 2012, Inktank Storage, Inc..

 Navigation

 	
 index

 	
 modules |

 	Ceph documentation

 Python Module Index

 r

 			

 		
 r	

 	
 	
 rbd	

 Copyright 2012, Inktank Storage, Inc..

 Navigation

 	
 index

 	
 modules |

 	Ceph documentation

Index

 Symbols
 | C
 | E
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W

Symbols

 	

 	
 --add name ip:port

 	

 	monmaptool command line option

 	
 --add-key

 	

 	ceph-authtool command line option

 	
 --auth-uid=auid

 	

 	radosgw-admin command line option

 	
 --bucket=bucket

 	

 	radosgw-admin command line option

 	
 --build numosds layer1 ...

 	

 	crushtool command line option

 	
 --cap subsystem capability

 	

 	ceph-authtool command line option

 	
 --caps capsfile

 	

 	ceph-authtool command line option

 	
 --clobber

 	

 	crushtool command line option

 	monmaptool command line option

 	osdmaptool command line option

 	
 --create

 	

 	monmaptool command line option

 	
 --createsimple numosd [--pgbits bitsperosd]

 	

 	osdmaptool command line option

 	
 --date=yyyy-mm-dd

 	

 	radosgw-admin command line option

 	
 --delete-before

 	

 	obsync command line option

 	
 --display-name=name

 	

 	radosgw-admin command line option

 	
 --email=email

 	

 	radosgw-admin command line option

 	
 --end-date=yyyy-mm-dd

 	

 	radosgw-admin command line option

 	
 --export-crush mapfile

 	

 	osdmaptool command line option

 	
 --filter-initial-members

 	

 	monmaptool command line option

 	
 --flush-journal

 	

 	ceph-osd command line option

 	
 --force

 	

 	obsync command line option

 	
 --fsid uuid

 	

 	monmaptool command line option

 	
 --gen-key

 	

 	ceph-authtool command line option

 	
 --generate

 	

 	monmaptool command line option

 	
 --get-cluster-fsid

 	

 	ceph-osd command line option

 	
 --get-journal-fsid

 	

 	ceph-osd command line option

 	
 --get-osd-fsid

 	

 	ceph-osd command line option

 	
 --import-crush mapfile

 	

 	osdmaptool command line option

 	
 --init-local-daemons type -d dir

 	

 	mkcephfs command line option

 	
 --keyring

 	

 	ceph-mon command line option

 	
 --mkbtrfs

 	

 	mkcephfs command line option

 	
 --mkfs

 	

 	ceph-mon command line option

 	ceph-osd command line option

 	
 --mkjournal

 	

 	ceph-osd command line option

 	
 --mkkey

 	

 	ceph-osd command line option

 	
 --no-copy-conf

 	

 	mkcephfs command line option

 	
 --no-preserve-acls

 	

 	obsync command line option

 	
 --num_client num

 	

 	ceph-syn command line option

 	
 --object=object

 	

 	radosgw-admin command line option

 	
 --order bits

 	

 	rbd command line option

 	
 --osd-data osddata

 	

 	ceph-osd command line option

 	
 --osd-journal journal

 	

 	ceph-osd command line option

 	
 --prepare-mon -d dir

 	

 	mkcephfs command line option

 	
 --prepare-monmap -d dir -c ceph.conf

 	

 	mkcephfs command line option

 	
 --print

 	

 	monmaptool command line option

 	osdmaptool command line option

 	
 --rgw-socket-path=path

 	

 	radosgw command line option

 	
 --rm name

 	

 	monmaptool command line option

 	

 	
 --secret filename

 	

 	rbd command line option

 	
 --secret=secret

 	

 	radosgw-admin command line option

 	
 --size size-in-mb

 	

 	rbd command line option

 	
 --snap snap

 	

 	rbd command line option

 	
 --start-date=yyyy-mm-dd

 	

 	radosgw-admin command line option

 	
 --syn workloadspec

 	

 	ceph-syn command line option

 	
 --uid=uid

 	

 	radosgw-admin command line option

 	
 --user username

 	

 	rbd command line option

 	
 --vernum

 	

 	librados-config command line option

 	
 --version

 	

 	librados-config command line option

 	
 -a, --allhosts

 	

 	mkcephfs command line option

 	
 -a, --arch

 	

 	ceph-clsinfo command line option

 	
 -c --stripe_count

 	

 	cephfs command line option

 	
 -c ceph.conf, --conf ceph.conf

 	

 	rbd command line option

 	
 -c ceph.conf, --conf=ceph.conf

 	

 	ceph command line option

 	ceph-debugpack command line option

 	ceph-fuse command line option

 	ceph-mds command line option

 	ceph-mon command line option

 	ceph-osd command line option

 	ceph-syn command line option

 	mkcephfs command line option

 	rados command line option

 	radosgw command line option

 	radosgw-admin command line option

 	
 -c map.txt

 	

 	crushtool command line option

 	
 -c, --create-dest

 	

 	obsync command line option

 	
 -C, --create-keyring

 	

 	ceph-authtool command line option

 	
 -d

 	

 	ceph-fuse command line option

 	ceph-mds command line option

 	ceph-mon command line option

 	ceph-osd command line option

 	ceph-syn command line option

 	
 -d map

 	

 	crushtool command line option

 	
 -f, --foreground

 	

 	ceph-mds command line option

 	ceph-mon command line option

 	ceph-osd command line option

 	
 -h, --help

 	

 	obsync command line option

 	
 -i infile

 	

 	ceph command line option

 	rados command line option

 	
 -k /path/to/keyring

 	

 	mkcephfs command line option

 	
 -l --offset

 	

 	cephfs command line option

 	
 -L, --follow-symlinks

 	

 	obsync command line option

 	
 -l, --list

 	

 	ceph-authtool command line option

 	
 -m monaddress[:port]

 	

 	ceph command line option

 	ceph-fuse command line option

 	ceph-mds command line option

 	ceph-osd command line option

 	ceph-syn command line option

 	rados command line option

 	radosgw command line option

 	radosgw-admin command line option

 	rbd command line option

 	
 -n, --dry-run

 	

 	obsync command line option

 	
 -n, --name

 	

 	ceph-clsinfo command line option

 	
 -o --osd

 	

 	cephfs command line option

 	
 -o outfile

 	

 	ceph command line option

 	crushtool command line option

 	rados command line option

 	
 -p --pool

 	

 	cephfs command line option

 	
 -p pool, --pool pool

 	

 	rados command line option

 	rbd command line option

 	
 -p, --print

 	

 	ceph-authtool command line option

 	
 -r root_directory

 	

 	ceph-fuse command line option

 	
 -s --object_size

 	

 	cephfs command line option

 	
 -s snap, --snap snap

 	

 	rados command line option

 	
 -u --stripe_unit

 	

 	cephfs command line option

 	
 -V, --more-verbose

 	

 	obsync command line option

 	
 -v, --verbose

 	

 	obsync command line option

 	
 -v, --version

 	

 	ceph-clsinfo command line option

 	
 -x SRC=DST, --xuser SRC=DST

 	

 	obsync command line option

C

 	

 	cap

 	capability

 	
 ceph command line option

 	

 	-c ceph.conf, --conf=ceph.conf

 	-i infile

 	-m monaddress[:port]

 	-o outfile

 	Ceph Distributed File System

 	Ceph filesystem

 	
 ceph-authtool command line option

 	

 	--add-key

 	--cap subsystem capability

 	--caps capsfile

 	--gen-key

 	-C, --create-keyring

 	-l, --list

 	-p, --print

 	
 ceph-clsinfo command line option

 	

 	-a, --arch

 	-n, --name

 	-v, --version

 	
 ceph-debugpack command line option

 	

 	-c ceph.conf, --conf=ceph.conf

 	
 ceph-fuse command line option

 	

 	-c ceph.conf, --conf=ceph.conf

 	-d

 	-m monaddress[:port]

 	-r root_directory

 	ceph-mds

 	
 ceph-mds command line option

 	

 	-c ceph.conf, --conf=ceph.conf

 	-d

 	-f, --foreground

 	-m monaddress[:port]

 	ceph-mon

 	
 ceph-mon command line option

 	

 	--keyring

 	--mkfs

 	-c ceph.conf, --conf=ceph.conf

 	-d

 	-f, --foreground

 	ceph-osd

 	
 ceph-osd command line option

 	

 	--flush-journal

 	--get-cluster-fsid

 	--get-journal-fsid

 	--get-osd-fsid

 	--mkfs

 	--mkjournal

 	--mkkey

 	--osd-data osddata

 	--osd-journal journal

 	-c ceph.conf, --conf=ceph.conf

 	-d

 	-f, --foreground

 	-m monaddress[:port]

 	
 ceph-syn command line option

 	

 	--num_client num

 	--syn workloadspec

 	-c ceph.conf, --conf=ceph.conf

 	-d

 	-m monaddress[:port]

 	

 	CEPH_OSD_TMAP_CREATE (C macro)

 	CEPH_OSD_TMAP_HDR (C macro)

 	CEPH_OSD_TMAP_RM (C macro)

 	CEPH_OSD_TMAP_SET (C macro)

 	
 cephfs command line option

 	

 	-c --stripe_count

 	-l --offset

 	-o --osd

 	-p --pool

 	-s --object_size

 	-u --stripe_unit

 	clone() (rbd.RBD method)

 	close() (rbd.Image method)

 	commands

 	control

 	copy() (rbd.Image method)

 	create() (rbd.RBD method)

 	create_snap() (rbd.Image method)

 	CRUSH

 	
 crushtool command line option

 	

 	--build numosds layer1 ...

 	--clobber

 	-c map.txt

 	-d map

 	-o outfile

 	cryptography

E

 	

 	
 environment variable

 	

 	AKEY

 	DST_AKEY

 	DST_CONSISTENCY

 	DST_SKEY

 	SKEY

 	SRC_AKEY

 	SRC_SKEY

I

 	

 	id

 	

 	Image (class in rbd)

K

 	

 	kb (C member)

 	kb_avail (C member)

 	

 	kb_used (C member)

 	key

L

 	

 	
 librados-config command line option

 	

 	--vernum

 	--version

 	LIBRADOS_SUPPORTS_WATCH (C macro)

 	LIBRADOS_VER_EXTRA (C macro)

 	LIBRADOS_VER_MAJOR (C macro)

 	LIBRADOS_VER_MINOR (C macro)

 	

 	LIBRADOS_VERSION (C macro)

 	LIBRADOS_VERSION_CODE (C macro)

 	list() (rbd.RBD method)

 	list_snaps() (rbd.Image method)

M

 	

 	MDS

 	metrics

 	
 mkcephfs command line option

 	

 	--init-local-daemons type -d dir

 	--mkbtrfs

 	--no-copy-conf

 	--prepare-mon -d dir

 	--prepare-monmap -d dir -c ceph.conf

 	-a, --allhosts

 	-c ceph.conf, --conf=ceph.conf

 	-k /path/to/keyring

 	

 	monitor

 	monitoring

 	
 monmaptool command line option

 	

 	--add name ip:port

 	--clobber

 	--create

 	--filter-initial-members

 	--fsid uuid

 	--generate

 	--print

 	--rm name

N

 	

 	name

 	num_bytes (C member)

 	num_kb (C member)

 	num_object_clones (C member)

 	num_object_copies (C member)

 	num_objects (C member), [1]

 	num_objects_degraded (C member)

 	

 	num_objects_missing_on_primary (C member)

 	num_objects_unfound (C member)

 	num_rd (C member)

 	num_rd_kb (C member)

 	num_wr (C member)

 	num_wr_kb (C member)

O

 	

 	object

 	
 obsync command line option

 	

 	--delete-before

 	--force

 	--no-preserve-acls

 	-L, --follow-symlinks

 	-V, --more-verbose

 	-c, --create-dest

 	-h, --help

 	-n, --dry-run

 	-v, --verbose

 	-x SRC=DST, --xuser SRC=DST

 	

 	OSD

 	
 osdmaptool command line option

 	

 	--clobber

 	--createsimple numosd [--pgbits bitsperosd]

 	--export-crush mapfile

 	--import-crush mapfile

 	--print

P

 	

 	pool

 	

 	
 Python Enhancement Proposals

 	

 	PEP 343

R

 	

 	RADOS

 	Rados Block Device

 	
 rados command line option

 	

 	-c ceph.conf, --conf=ceph.conf

 	-i infile

 	-m monaddress[:port]

 	-o outfile

 	-p pool, --pool pool

 	-s snap, --snap snap

 	RADOS Gateway, [1]

 	rados_aio_append (C function)

 	rados_aio_create_completion (C function)

 	rados_aio_flush (C function)

 	rados_aio_get_return_value (C function)

 	rados_aio_is_complete (C function)

 	rados_aio_is_complete_and_cb (C function)

 	rados_aio_is_safe (C function)

 	rados_aio_is_safe_and_cb (C function)

 	rados_aio_read (C function)

 	rados_aio_release (C function)

 	rados_aio_wait_for_complete (C function)

 	rados_aio_wait_for_complete_and_cb (C function)

 	rados_aio_wait_for_safe (C function)

 	rados_aio_wait_for_safe_and_cb (C function)

 	rados_aio_write (C function)

 	rados_aio_write_full (C function)

 	rados_append (C function)

 	rados_callback_t (C type)

 	rados_cct (C function)

 	rados_clone_range (C function)

 	rados_cluster_stat (C function)

 	rados_cluster_stat_t (C type)

 	rados_completion_t (C type)

 	rados_conf_get (C function)

 	rados_conf_parse_argv (C function)

 	rados_conf_parse_env (C function)

 	rados_conf_read_file (C function)

 	rados_conf_set (C function)

 	rados_config_t (C type)

 	rados_connect (C function)

 	rados_create (C function)

 	rados_create_with_context (C function)

 	rados_exec (C function)

 	rados_get_instance_id (C function)

 	rados_get_last_version (C function)

 	rados_getxattr (C function)

 	rados_getxattrs (C function)

 	rados_getxattrs_end (C function)

 	rados_getxattrs_next (C function)

 	rados_ioctx_cct (C function)

 	rados_ioctx_create (C function)

 	rados_ioctx_destroy (C function)

 	rados_ioctx_get_id (C function)

 	rados_ioctx_get_pool_name (C function)

 	rados_ioctx_locator_set_key (C function)

 	rados_ioctx_pool_get_auid (C function)

 	rados_ioctx_pool_set_auid (C function)

 	rados_ioctx_pool_stat (C function)

 	rados_ioctx_selfmanaged_snap_create (C function)

 	rados_ioctx_selfmanaged_snap_remove (C function)

 	rados_ioctx_selfmanaged_snap_rollback (C function)

 	

 	rados_ioctx_selfmanaged_snap_set_write_ctx (C function)

 	rados_ioctx_snap_create (C function)

 	rados_ioctx_snap_get_name (C function)

 	rados_ioctx_snap_get_stamp (C function)

 	rados_ioctx_snap_list (C function)

 	rados_ioctx_snap_lookup (C function)

 	rados_ioctx_snap_remove (C function)

 	rados_ioctx_snap_set_read (C function)

 	rados_ioctx_t (C type)

 	rados_list_ctx_t (C type)

 	rados_notify (C function)

 	rados_objects_list_close (C function)

 	rados_objects_list_next (C function)

 	rados_objects_list_open (C function)

 	rados_pool_create (C function)

 	rados_pool_create_with_all (C function)

 	rados_pool_create_with_auid (C function)

 	rados_pool_create_with_crush_rule (C function)

 	rados_pool_delete (C function)

 	rados_pool_list (C function)

 	rados_pool_lookup (C function)

 	rados_pool_stat_t (C type)

 	rados_read (C function)

 	rados_remove (C function)

 	rados_rmxattr (C function)

 	rados_rollback (C function)

 	rados_setxattr (C function)

 	rados_shutdown (C function)

 	rados_snap_t (C type)

 	rados_stat (C function)

 	rados_t (C type)

 	rados_tmap_get (C function)

 	rados_tmap_put (C function)

 	rados_tmap_update (C function)

 	rados_trunc (C function)

 	rados_unwatch (C function)

 	rados_version (C function)

 	rados_watch (C function)

 	rados_watchcb_t (C type)

 	rados_write (C function)

 	rados_write_full (C function)

 	rados_xattrs_iter_t (C type)

 	radosgw, [1]

 	
 radosgw command line option

 	

 	--rgw-socket-path=path

 	-c ceph.conf, --conf=ceph.conf

 	-m monaddress[:port]

 	
 radosgw-admin command line option

 	

 	--auth-uid=auid

 	--bucket=bucket

 	--date=yyyy-mm-dd

 	--display-name=name

 	--email=email

 	--end-date=yyyy-mm-dd

 	--object=object

 	--secret=secret

 	--start-date=yyyy-mm-dd

 	--uid=uid

 	-c ceph.conf, --conf=ceph.conf

 	-m monaddress[:port]

 	RBD, [1]

 	

 	(class in rbd)

 	rbd (module)

 	
 rbd command line option

 	

 	--order bits

 	--secret filename

 	--size size-in-mb

 	--snap snap

 	--user username

 	-c ceph.conf, --conf ceph.conf

 	-m monaddress[:port]

 	-p pool, --pool pool

 	read() (rbd.Image method)

 	remove() (rbd.RBD method)

 	remove_snap() (rbd.Image method)

 	rename() (rbd.RBD method)

 	resize() (rbd.Image method)

 	rollback_to_snap() (rbd.Image method)

S

 	

 	set_snap() (rbd.Image method)

 	SnapIterator (class in rbd)

 	

 	stat() (rbd.Image method)

T

 	

 	type

V

 	

 	version() (rbd.RBD method)

W

 	

 	write() (rbd.Image method)

 Copyright 2012, Inktank Storage, Inc..

 man/1/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

Section 1, executable programs or shell commands

		obsync – The object synchronizer tool

 © Copyright 2012, Inktank Storage, Inc..

ops/manage/crush.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operations »

 		Managing a Ceph cluster »

Adjusting the CRUSH map

There are a few ways to adjust the crush map:

		online, by issuing commands to the monitor

		offline, by extracting the current map to a file, modifying it, and then reinjecting a new map

For offline changes, some can be made directly with crushtool, and
others require you to decompile the file to text form, manually edit
it, and then recompile.

Adding a new device (OSD) to the map

Adding new devices or moving existing devices to new positions in the
CRUSH hierarchy can be done via the monitor. The general form is:

$ ceph osd crush set <id> <name> <weight> [<loc> [<lo2> ...]]

where

		id is the numeric device id (the OSD id)

		name is an alphanumeric name. By convention Ceph uses
osd.$id.

		weight is a floating point weight value controlling how much
data the device will be allocated. A decent convention is to make
this the number of TB the device will store.

		loc is a list of what=where pairs indicating where in the
CRUSH hierarchy the device will be stored. By default, the
hierarchy (the what``s) includes ``pool (the default pool
is normally the root of the hierarchy), rack, and host.
At least one of these location specifiers has to refer to an
existing point in the hierarchy, and only the lowest (most
specific) match counts. Beneath that point, any intervening
branches will be created as needed. Specifying the complete
location is always sufficient, and also safe in that existing
branches (and devices) won’t be moved around.

For example, if the OSD id is 123, we want a weight of 1.0 and
the device is on host hostfoo and rack rackbar:

$ ceph osd crush set 123 osd.123 1.0 pool=default rack=rackbar host=hostfoo

will add it to the hierarchy, or move it from its previous position.
The rack rackbar and host hostfoo will be added as needed, as
long as the pool default exists (as it does in the default Ceph
CRUSH map generated during cluster creation).

Note that if I later add another device in the same host but specify a
different pool or rack:

$ ceph osd crush set 124 osd.124 1.0 pool=nondefault rack=weirdrack host=hostfoo

the device will still be placed in host hostfoo at its current
location (rack rackbar and pool default).

Moving a bucket to a different position in the hierarchy

To move an existing bucket to a different position in the hierarchy,
identify the bucket to move by name and specify the new location in
the same fashion as with osd crush set ...:

$ ceph osd crush move <bucket name> [<loc> [<loc2> ...]]

where

		name is the name of the bucket to move. (To move a device,
see adjusting-crush-set.)

		loc is a list of what=where pairs indicating where the bucket should
be moved. See adjusting-crush-set.

Adjusting the CRUSH weight

You can adjust the CRUSH weight for a device with:

$ ceph osd crush reweight osd.123 2.0

Removing a device

You can remove a device from the crush map with:

$ ceph osd crush remove osd.123

 © Copyright 2012, Inktank Storage, Inc..

radosgw/swift/tutorial.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		Swift-compatible API »

Tutorial

The Swift-compatible API tutorials follow a simple container-based object
lifecycle. The first step requires you to setup a connection between your
client and the RADOS Gateway server. Then, you may follow a natural
container and object lifecycle, including adding and retrieving object
metadata. See example code for the following languages:

		Java

		Python

		Ruby

[image:]

 © Copyright 2012, Inktank Storage, Inc..

faq.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

Frequently Asked Questions

These questions have been frequently asked on the ceph-devel mailing
list, the IRC channel, and on the Ceph.com blog.

Is Ceph Production-Quality?

The definition of “production quality” varies depending on who you ask.
Because it can mean a lot of different things depending on how you want to
use Ceph, we prefer not to think of it as a binary term.

At this point we support the RADOS object store, radosgw, and rbd because
we think they are sufficiently stable that we can handle the support
workload. There are several organizations running those parts of the
system in production. Others wouldn’t dream of doing so at this stage.

The CephFS POSIX-compliant filesystem is functionally-complete and has
been evaluated by a large community of users, but has not yet been
subjected to extensive, methodical testing.

We can tell you how we test, and what we support, but in the end it’s
your judgement that matters most!

How can I add a question to this list?

If you’d like to add a question to this list (hopefully with an
accompanying answer!), you can find it in the doc/ directory of our
main git repository:

https://github.com/ceph/ceph/blob/master/doc/faq.rst

We use Sphinx to manage our documentation, and this page is generated
from reStructuredText source. See the section on Building Ceph
Documentation for the build procedure.

 © Copyright 2012, Inktank Storage, Inc..

_static/minus.png

ops/manage/pool.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operations »

 		Managing a Ceph cluster »

Managing RADOS pools

Creating new pools

Authorizing access to pools

Todo

“Pool access is decided by having capability blah. To add the capability, blah blah, see Setting capabilities for a key

Todo

when and who needs pool access

Custom pool layouts with CRUSH

 © Copyright 2012, Inktank Storage, Inc..

ops/manage/failures/mon.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operations »

 		Managing a Ceph cluster »

 		Recovering from failures »

Recovering from ceph-mon failure

Any single ceph-mon failure should not take down the entire monitor
cluster as long as a majority of the nodes are available. If that
is the case–the remaining nodes are able to form a quorum–the ceph
health command will report any problems:

$ ceph health
HEALTH_WARN 1 mons down, quorum 0,2

and:

$ ceph health detail
HEALTH_WARN 1 mons down, quorum 0,2
mon.b (rank 1) addr 192.168.106.220:6790/0 is down (out of quorum)

Generally speaking, simply restarting the affected node will repair things.

If there are not enough monitors to form a quorum, the ceph
command will block trying to reach the cluster. In this situation,
you need to get enough ceph-mon daemons running to form a quorum
before doing anything else with the cluster.

Replacing a monitor

If, for some reason, a monitor data store becomes corrupt, the monitor
can be recreated and allowed to rejoin the cluster, much like a normal
monitor cluster expansion. See Adding a monitor.

 © Copyright 2012, Inktank Storage, Inc..

radosgw/s3/serviceops.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		RADOS S3 API »

Service Operations

List Buckets

GET / returns a list of buckets created by the user making the request. GET / only
returns buckets created by an authenticated user. You cannot make an anonymous request.

Syntax

GET / HTTP/1.1
Host: cname.domain.com

Authorization: AWS {access-key}:{hash-of-header-and-secret}

Response Entities

		Name
		Type
		Description

		Buckets
		Container
		Container for list of buckets.

		Bucket
		Container
		Container for bucket information.

		Name
		String
		Bucket name.

		CreationDate
		Date
		UTC time when the bucket was created.

		ListAllMyBucketsResult
		Container
		A container for the result.

		Owner
		Container
		A container for the bucket owner’s ID and DisplayName.

		ID
		String
		The bucket owner’s ID.

		DisplayName
		String
		The bucket owner’s display name.

 © Copyright 2012, Inktank Storage, Inc..

radosgw/swift/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

Swift-compatible API

RADOS Gateway provides a scalable, highly available redundant object storage
API that is compatible with a subset of the OpenStack Swift [http://docs.openstack.org/api/openstack-object-storage/1.0/content/] API. The
Swift-compatible API provides a container-based object storage, with support
for multiple users, storage containers, and access control lists (ACLs).
This API makes it possible to use a RADOS storage cluster as a Swift-compatible
object storage system, while simultaneously supporting Ceph FS and RADOS block
devices too (e.g., you can use it for your Rackspace Cloud Files).

Note

The popular Amazon S3 API uses the term ‘bucket’ to describe a data
container. When you hear someone refer to a ‘bucket’ within the Swift API,
the term ‘bucket’ may be construed as the equivalent of the term ‘container.’

		Tutorial Overview

		Tutorial-Java
		Setup

		Create a Connection

		Create a Container

		Create an Object

		Add/Update Object Metadata

		List Owned Containers

		List a Container’s Content

		Retrieve an Object’s Metadata

		Retrieve an Object

		Delete an Object

		Delete a Container

		Tutorial-Python
		Create a Connection

		Create a Container

		Create an Object

		List Owned Containers

		List a Container’s Content

		Retrieve an Object

		Delete an Object

		Delete a Container

		Tutorial-Ruby
		Create a Connection

		Create a Container

		Create an Object

		List Owned Containers

		List a Container’s Contents

		Retrieve an Object

		Delete an Object

		Delete a Container

		Auth API
		Auth Get
		Syntax

		Request Headers

		Response Headers

		Service API
		List Containers
		Syntax

		Request Parameters

		Response Entities

		Container API
		Create a Container
		Syntax

		Headers

		HTTP Response

		List a Container’s Objects
		Syntax

		Parameters

		Response Entities

		Update a Container’s ACLs
		Syntax

		Request Headers

		Add/Update Container Metadata
		Syntax

		Request Headers

		Delete a Container
		Syntax

		HTTP Response

		Object API
		Create/Update an Object
		Syntax

		Request Headers

		Copy an Object
		Syntax

		Request Headers

		Delete an Object
		Syntax

		Get an Object
		Syntax

		Request Headers

		Response Headers

		Get Object Metadata
		Syntax

		Add/Update Object Metadata
		Syntax

		Request Headers

 © Copyright 2012, Inktank Storage, Inc..

ops/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

Operations

		Managing a Ceph cluster
		Managing crypto keys
		Types of keys

		Capabilities

		Adding a new key

		Setting capabilities for a key

		Revoking a key

		Growing or shrinking a Ceph cluster
		Resizing the RADOS cluster
		Adding a new OSD to the cluster

		Removing OSDs

		Tuning Placement Groups
		Purpose

		Optimal total PG count

		Multiple pools

		Splitting/merging PGs

		Resizing the metadata cluster
		Adding new MDSes
		Setting up standby and standby-replay MDSes

		Removing MDSes

		Resizing the monitor cluster
		Adding a monitor

		Removing a monitor from a healthy cluster

		Removing a monitor from an unhealthy or down cluster

		Recovering from failures
		Recovering from ceph-mon failure
		Replacing a monitor

		Recovering from ceph-osd failure
		Single ceph-osd failure

		Full cluster

		Homeless placement groups (PGs)

		Stuck PGs

		PG down (peering failure)

		Unfound objects

		Slow or unresponsive ceph-osd

		Flapping OSDs

		Recovering from ceph-mds failure

		Recovering from radosgw failure
		HTTP Request Errors

		Crashed radosgw process

		Blocked radosgw Requests

		Adjusting the CRUSH map
		Adding a new device (OSD) to the map

		Moving a bucket to a different position in the hierarchy

		Adjusting the CRUSH weight

		Removing a device

		Managing RADOS pools
		Creating new pools

		Authorizing access to pools

		Custom pool layouts with CRUSH

		Managing Cephfs
		Mounting
		Kernel client

		FUSE

		Using custom pools for subtrees

		Radosgw installation and administration
		Configuring Ceph for RADOS Gateway

		Creating authentication credentials

		Configuring the web server for radosgw

		The radosgw FastCGI wrapper

		Configuring Apache for radosgw

		Starting the daemons

		Creating users

		Enabling Swift access

		RBD setup and administration

		Monitoring Ceph

 © Copyright 2012, Inktank Storage, Inc..

radosgw/s3/objectops.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		RADOS S3 API »

Object Operations

Put Object

Adds an object to a bucket. You must have write permissions on the bucket to perform this operation.

Syntax

PUT /{bucket}/{object} HTTP/1.1

Request Headers

		Name
		Description
		Valid Values
		Required

		content-md5
		A base64 encoded MD-5 hash of the message.
		A string. No defaults or constraints.
		No

		content-type
		A standard MIME type.
		Any MIME type. Default: binary/octet-stream
		No

		x-amz-meta-<...>
		User metadata. Stored with the object.
		A string up to 8kb. No defaults.
		No

		x-amz-acl
		A canned ACL.
		private, public-read, public-read-write, authenticated-read
		No

Copy Object

To copy an object, use PUT and specify a destination bucket and the object name.

Syntax

PUT /{dest-bucket}/{dest-object} HTTP/1.1
x-amz-copy-source: {source-bucket}/{source-object}

Request Headers

		Name
		Description
		Valid Values
		Required

		x-amz-copy-source
		The source bucket name + object name.
		{bucket}/{obj}
		Yes

		x-amz-acl
		A canned ACL.
		private,
public-read,
public-read-write,
authenticated-read
		No

		x-amz-copy-if-modified-since
		Copies only if modified since the timestamp.
		Timestamp
		No

		x-amz-copy-if-unmodified-since
		Copies only if unmodified since the timestamp.
		Timestamp
		No

		x-amz-copy-if-match
		Copies only if object ETag matches ETag.
		Entity Tag
		No

		x-amz-copy-if-none-match
		Copies only if object ETag doesn’t match.
		Entity Tag
		No

Response Entities

		Name
		Type
		Description

		CopyObjectResult
		Container
		A container for the response elements.

		LastModified
		Date
		The last modified date of the source object.

		Etag
		String
		The ETag of the new object.

Remove Object

Removes an object. Requires WRITE permission set on the containing bucket.

Syntax

DELETE /{bucket}/{object} HTTP/1.1

Get Object

Retrieves an object from a bucket within RADOS.

Syntax

GET /{bucket}/{object} HTTP/1.1

Request Headers

		Name
		Description
		Valid Values
		Required

		range
		The range of the object to retrieve.
		Range: bytes=beginbyte-endbyte
		No

		if-modified-since
		Gets only if modified since the timestamp.
		Timestamp
		No

		if-unmodified-since
		Gets only if not modified since the timestamp.
		Timestamp
		No

		if-match
		Gets only if object ETag matches ETag.
		Entity Tag
		No

		if-none-match
		Gets only if object ETag matches ETag.
		Entity Tag
		No

Response Headers

		Name
		Description

		Content-Range
		Data range, will only be returned if the range header field was specified in the request

Get Object Info

Returns information about object. This request will return the same
header information as with the Get Object request, but will include
the metadata only, not the object data payload.

Syntax

HEAD /{bucket}/{object} HTTP/1.1

Request Headers

		Name
		Description
		Valid Values
		Required

		range
		The range of the object to retrieve.
		Range: bytes=beginbyte-endbyte
		No

		if-modified-since
		Gets only if modified since the timestamp.
		Timestamp
		No

		if-unmodified-since
		Gets only if not modified since the timestamp.
		Timestamp
		No

		if-match
		Gets only if object ETag matches ETag.
		Entity Tag
		No

		if-none-match
		Gets only if object ETag matches ETag.
		Entity Tag
		No

Get Object ACL

Syntax

GET /{bucket}/{object}?acl HTTP/1.1

Response Entities

		Name
		Type
		Description

		AccessControlPolicy
		Container
		A container for the response.

		AccessControlList
		Container
		A container for the ACL information.

		Owner
		Container
		A container for the object owner’s ID and DisplayName.

		ID
		String
		The object owner’s ID.

		DisplayName
		String
		The object owner’s display name.

		Grant
		Container
		A container for Grantee and Permission.

		Grantee
		Container
		A container for the DisplayName and ID of the user receiving a grant of permission.

		Permission
		String
		The permission given to the Grantee object.

Set Object ACL

Syntax

PUT /{bucket}/{object}?acl

Request Entities

		Name
		Type
		Description

		AccessControlPolicy
		Container
		A container for the response.

		AccessControlList
		Container
		A container for the ACL information.

		Owner
		Container
		A container for the object owner’s ID and DisplayName.

		ID
		String
		The object owner’s ID.

		DisplayName
		String
		The object owner’s display name.

		Grant
		Container
		A container for Grantee and Permission.

		Grantee
		Container
		A container for the DisplayName and ID of the user receiving a grant of permission.

		Permission
		String
		The permission given to the Grantee object.

Initiate Multi-part Upload

Initiate a multi-part upload process.

Syntax

POST /{bucket}/{object}?uploads

Request Headers

		Name
		Description
		Valid Values
		Required

		content-md5
		A base64 encoded MD-5 hash of the message.
		A string. No defaults or constraints.
		No

		content-type
		A standard MIME type.
		Any MIME type. Default: binary/octet-stream
		No

		x-amz-meta-<...>
		User metadata. Stored with the object.
		A string up to 8kb. No defaults.
		No

		x-amz-acl
		A canned ACL.
		private, public-read, public-read-write, authenticated-read
		No

Response Entities

		Name
		Type
		Description

		InitiatedMultipartUploadsResult
		Container
		A container for the results.

		Bucket
		String
		The bucket that will receive the object contents.

		Key
		String
		The key specified by the key request parameter (if any).

		UploadId
		String
		The ID specified by the upload-id request parameter identifying the multipart upload (if any).

Multipart Upload Part

Syntax

PUT /{bucket}/{object}?partNumber=&uploadId= HTTP/1.1

HTTP Response

The following HTTP response may be returned:

		HTTP Status
		Status Code
		Description

		404
		NoSuchUpload
		Specified upload-id does not match any initiated upload on this object

List Multipart Upload Parts

Syntax

GET /{bucket}/{object}?uploadId=123 HTTP/1.1

Response Entities

		Name
		Type
		Description

		InitiatedMultipartUploadsResult
		Container
		A container for the results.

		Bucket
		String
		The bucket that will receive the object contents.

		Key
		String
		The key specified by the key request parameter (if any).

		UploadId
		String
		The ID specified by the upload-id request parameter identifying the multipart upload (if any).

		Initiator
		Container
		Contains the ID and DisplayName of the user who initiated the upload.

		ID
		String
		The initiator’s ID.

		DisplayName
		String
		The initiator’s display name.

		Owner
		Container
		A container for the ID and DisplayName of the user who owns the uploaded object.

		StorageClass
		String
		The method used to store the resulting object. STANDARD or REDUCED_REDUNDANCY

		PartNumberMarker
		String
		The part marker to use in a subsequent request if IsTruncated is true. Precedes the list.

		NextPartNumberMarker
		String
		The next part marker to use in a subsequent request if IsTruncated is true. The end of the list.

		MaxParts
		Integer
		The max parts allowed in the response as specified by the max-parts request parameter.

		IsTruncated
		Boolean
		If true, only a subset of the object’s upload contents were returned.

		Part
		Container
		A container for Key, Part, InitiatorOwner, StorageClass, and Initiated elements.

		PartNumber
		Integer
		The identification number of the part.

		ETag
		String
		The part’s entity tag.

		Size
		Integer
		The size of the uploaded part.

Complete Multipart Upload

Assembles uploaded parts and creates a new object, thereby completing a multipart upload.

Syntax

POST /{bucket}/{object}?uploadId= HTTP/1.1

Request Entities

		Name
		Type
		Description
		Required

		CompleteMultipartUpload
		Container
		A container consisting of one or more parts.
		Yes

		Part
		Container
		A container for the PartNumber and ETag.
		Yes

		PartNumber
		Integer
		The identifier of the part.
		Yes

		ETag
		String
		The part’s entity tag.
		Yes

Response Entities

		Name
		Type
		Description

		CompleteMultipartUploadResult
		Container
		A container for the response.

		Location
		URI
		The resource identifier (path) of the new object.

		Bucket
		String
		The name of the bucket that contains the new object.

		Key
		String
		The object’s key.

		ETag
		String
		The entity tag of the new object.

Abort Multipart Upload

Syntax

DELETE /{bucket}/{object}?uploadId= HTTP/1.1

 © Copyright 2012, Inktank Storage, Inc..

_images/stack.png
Client Interfaces to Ceph

B w @ is

Source Code Command Line POSIX Block Object
Libraries Shell File System Device Store

Ceph Storage Cluster Monitor Cluster

man/8/mount.ceph.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

mount.ceph – mount a ceph file system

Synopsis

mount.ceph monaddr1[,monaddr2,...]:/[subdir] dir [
-o options]

Description

mount.ceph is a simple helper for mounting the Ceph file system on
a Linux host. It serves to resolve monitor hostname(s) into IP
addresses and read authentication keys from disk; the Linux kernel
client component does most of the real work. In fact, it is possible
to mount a non-authenticated Ceph file system without mount.ceph by
specifying monitor address(es) by IP:

mount -t ceph 1.2.3.4:/ mountpoint

Each monitor address monaddr takes the form host[:port]. If the port
is not specified, the Ceph default of 6789 is assumed.

Multiple monitor addresses can be separated by commas. Only one
responsible monitor is needed to successfully mount; the client will
learn about all monitors from any responsive monitor. However, it is a
good idea to specify more than one in case one happens to be down at
the time of mount.

A subdirectory subdir may be specified if a subset of the file system
is to be mounted.

Mount helper application conventions dictate that the first two
options are device to be mounted and destination path. Options must be
passed only after these fixed arguments.

Options

		wsize

		int, max write size. Default: none (writeback uses smaller of wsize
and stripe unit)

		rsize

		int (bytes), max readahead, multiple of 1024, Default: 524288
(512*1024)

		osdtimeout

		int (seconds), Default: 60

		osdkeepalivetimeout

		int, Default: 5

		mount_timeout

		int (seconds), Default: 60

		osd_idle_ttl

		int (seconds), Default: 60

		caps_wanted_delay_min

		int, cap release delay, Default: 5

		caps_wanted_delay_max

		int, cap release delay, Default: 60

		cap_release_safety

		int, Default: calculated

		readdir_max_entries

		int, Default: 1024

		readdir_max_bytes

		int, Default: 524288 (512*1024)

		write_congestion_kb

		int (kb), max writeback in flight. scale with available
memory. Default: calculated from available memory

		snapdirname

		string, set the name of the hidden snapdir. Default: .snap

		name

		RADOS user to authenticate as when using cephx. Default: guest

		secret

		secret key for use with cephx. This option is insecure because it exposes
the secret on the command line. To avoid this, use the secretfile option.

		secretfile

		path to file containing the secret key to use with cephx

		ip

		my ip

		noshare

		create a new client instance, instead of sharing an existing
instance of a client mounting the same cluster

		dirstat

		funky cat dirname for stats, Default: off

		nodirstat

		no funky cat dirname for stats

		rbytes

		Report the recursive size of the directory contents for st_size on
directories. Default: on

		norbytes

		Do not report the recursive size of the directory contents for
st_size on directories.

		nocrc

		no data crc on writes

		noasyncreaddir

		no dcache readdir

Examples

Mount the full file system:

mount.ceph monhost:/ /mnt/foo

If there are multiple monitors:

mount.ceph monhost1,monhost2,monhost3:/ /mnt/foo

If ceph-mon(8) is running on a non-standard
port:

mount.ceph monhost1:7000,monhost2:7000,monhost3:7000:/ /mnt/foo

To mount only part of the namespace:

mount.ceph monhost1:/some/small/thing /mnt/thing

Assuming mount.ceph(8) is installed properly, it should be
automatically invoked by mount(8) like so:

mount -t ceph monhost:/ /mnt/foo

Availability

mount.ceph is part of the Ceph distributed file system. Please
refer to the Ceph documentation at http://ceph.com/docs for more
information.

See also

ceph-fuse(8),
ceph(8)

 © Copyright 2012, Inktank Storage, Inc..

source/build-prerequisites.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Ceph Source Code »

Build Prerequisites

Before you can build Ceph source code or Ceph documentation, you need to install
several libraries and tools.

Tip

Check this section to see if there are specific prerequisites for your
Linux/Unix distribution.

Prerequisites for Building Ceph Source Code

Ceph provides autoconf and automake scripts to get you started quickly.
Ceph build scripts depend on the following:

		autotools-dev

		autoconf

		automake

		cdbs

		gcc

		g++

		git

		libboost-dev

		libedit-dev

		libssl-dev

		libtool

		libfcgi

		libfcgi-dev

		libfuse-dev

		linux-kernel-headers

		libcrypto++-dev

		libcrypto++

		libexpat1-dev

		pkg-config

		libcurl4-gnutls-dev

On Ubuntu, execute sudo apt-get install for each dependency that isn’t
installed on your host.

sudo apt-get install autotools-dev autoconf automake cdbs gcc g++ git libboost-dev libedit-dev libssl-dev libtool libfcgi libfcgi-dev libfuse-dev linux-kernel-headers libcrypto++-dev libcrypto++ libexpat1-dev

On Debian/Squeeze, execute aptitude install for each dependency that isn’t
installed on your host.

aptitude install autotools-dev autoconf automake cdbs gcc g++ git libboost-dev libedit-dev libssl-dev libtool libfcgi libfcgi-dev libfuse-dev linux-kernel-headers libcrypto++-dev libcrypto++ libexpat1-dev

Ubuntu Requirements

		uuid-dev

		libkeyutils-dev

		libgoogle-perftools-dev

		libatomic-ops-dev

		libaio-dev

		libgdata-common

		libgdata13

Execute sudo apt-get install for each dependency that isn’t installed on
your host.

sudo apt-get install uuid-dev libkeyutils-dev libgoogle-perftools-dev libatomic-ops-dev libaio-dev libgdata-common libgdata13

Debian

Alternatively, you may also install:

aptitude install fakeroot dpkg-dev
aptitude install debhelper cdbs libexpat1-dev libatomic-ops-dev

openSUSE 11.2 (and later)

		boost-devel

		gcc-c++

		libedit-devel

		libopenssl-devel

		fuse-devel (optional)

Execute zypper install for each dependency that isn’t installed on your
host.

zypper install boost-devel gcc-c++ libedit-devel libopenssl-devel fuse-devel

Prerequisites for Building Ceph Documentation

Ceph utilizes Python’s Sphinx documentation tool. For details on
the Sphinx documentation tool, refer to: Sphinx [http://sphinx.pocoo.org]
Follow the directions at Sphinx 1.1.3 [http://pypi.python.org/pypi/Sphinx]
to install Sphinx. To run Sphinx, with admin/build-doc, at least the
following are required:

		python-dev

		python-pip

		python-virtualenv

		libxml2-dev

		libxslt-dev

		doxygen

		ditaa

		graphviz

Execute sudo apt-get install for each dependency that isn’t installed on
your host.

sudo apt-get install python-dev python-pip python-virtualenv libxml2-dev libxslt-dev doxygen ditaa graphviz

 © Copyright 2012, Inktank Storage, Inc..

dev/peering.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

Peering

Concepts

		Peering

		the process of bringing all of the OSDs that store
a Placement Group (PG) into agreement about the state
of all of the objects (and their metadata) in that PG.
Note that agreeing on the state does not mean that
they all have the latest contents.

		Acting set

		the ordered list of OSDs who are (or were as of some epoch)
responsible for a particular PG.

		Up set

		the ordered list of OSDs responsible for a particular PG for
a particular epoch according to CRUSH. Normally this
is the same as the acting set, except when the acting set has been
explicitly overridden via pg_temp in the OSDMap.

		current interval or past interval

		a sequence of osd map epochs during which the acting set and up
set for particular PG do not change

		primary

		the (by convention first) member of the acting set,
who is responsible for coordination peering, and is
the only OSD that will accept client initiated
writes to objects in a placement group.

		replica

		a non-primary OSD in the acting set for a placement group
(and who has been recognized as such and activated by the primary).

		stray

		an OSD who is not a member of the current acting set, but
has not yet been told that it can delete its copies of a
particular placement group.

		recovery

		ensuring that copies of all of the objects in a PG
are on all of the OSDs in the acting set. Once
peering has been performed, the primary can start
accepting write operations, and recovery can proceed
in the background.

		PG info basic metadata about the PG’s creation epoch, the version

		for the most recent write to the PG, last epoch started, last
epoch clean, and the beginning of the current interval. Any
inter-OSD communication about PGs includes the PG info, such that
any OSD that knows a PG exists (or once existed) also has a lower
bound on last epoch clean or last epoch started.

		PG log

		a list of recent updates made to objects in a PG.
Note that these logs can be truncated after all OSDs
in the acting set have acknowledged up to a certain
point.

		missing set

		Each OSD notes update log entries and if they imply updates to
the contents of an object, adds that object to a list of needed
updates. This list is called the missing set for that <OSD,PG>.

		Authoritative History

		a complete, and fully ordered set of operations that, if
performed, would bring an OSD’s copy of a Placement Group
up to date.

		epoch

		a (monotonically increasing) OSD map version number

		last epoch start

		the last epoch at which all nodes in the acting set
for a particular placement group agreed on an
authoritative history. At this point, peering is
deemed to have been successful.

		up_thru

		before a primary can successfully complete the peering process,
it must inform a monitor that is alive through the current
osd map epoch by having the monitor set its up_thru in the osd
map. This helps peering ignore previous acting sets for which
peering never completed after certain sequences of failures, such as
the second interval below:

		acting set = [A,B]

		acting set = [A]

		acting set = [] very shortly after (e.g., simultaneous failure, but staggered detection)

		acting set = [B] (B restarts, A does not)

		last epoch clean

		the last epoch at which all nodes in the acting set
for a particular placement group were completely
up to date (both PG logs and object contents).
At this point, recovery is deemed to have been
completed.

Description of the Peering Process

The Golden Rule is that no write operation to any PG
is acknowledged to a client until it has been persisted
by all members of the acting set for that PG. This means
that if we can communicate with at least one member of
each acting set since the last successful peering, someone
will have a record of every (acknowledged) operation
since the last successful peering.
This means that it should be possible for the current
primary to construct and disseminate a new authoritative history.

It is also important to appreciate the role of the OSD map
(list of all known OSDs and their states, as well as some
information about the placement groups) in the peering
process:

When OSDs go up or down (or get added or removed)
this has the potential to affect the active sets
of many placement groups.

Before a primary successfully completes the peering
process, the osd map must reflect that the OSD was alive
and well as of the first epoch in the current interval.

Changes can only be made after successful peering.

Thus, a new primary can use the latest OSD map along with a recent
history of past maps to generate a set of past intervals to
determine which OSDs must be consulted before we can successfully
peer. The set of past intervals is bounded by last epoch started,
the most recent past interval for which we know peering completed.
The process by with an OSD discovers a PG exists in the first place is
by exchanging PG info messages, so the OSD always has some lower
bound on last epoch started.

The high level process is for the current PG primary to:

		get a recent OSD map (to identify the members of the all
interesting acting sets, and confirm that we are still the
primary).

		generate a list of past intervals since last epoch started.
Consider the subset of those for which up_thru was greater than
the first interval epoch by the last interval epoch’s osd map; that is,
the subset for which peering could have completed before the acting
set changed to another set of OSDs.

Successfull peering will require that we be able to contact at
least one OSD from each of past interval‘s acting set.

		ask every node in that list for its PG info, which includes the most
recent write made to the PG, and a value for last epoch started. If
we learn about a last epoch started that is newer than our own, we can
prune older past intervals and reduce the peer OSDs we need to contact.

		if anyone else has (in his PG log) operations that I do not have,
instruct them to send me the missing log entries so that the primary’s
PG log is up to date (includes the newest write)..

		for each member of the current acting set:

		ask him for copies of all PG log entries since last epoch start
so that I can verify that they agree with mine (or know what
objects I will be telling him to delete).

If the cluster failed before an operation was persisted by all
members of the acting set, and the subsequent peering did not
remember that operation, and a node that did remember that
operation later rejoined, his logs would record a different
(divergent) history than the authoritative history that was
reconstructed in the peering after the failure.

Since the divergent events were not recorded in other logs
from that acting set, they were not acknowledged to the client,
and there is no harm in discarding them (so that all OSDs agree
on the authoritative history). But, we will have to instruct
any OSD that stores data from a divergent update to delete the
affected (and now deemed to be apocryphal) objects.

		ask him for his missing set (object updates recorded
in his PG log, but for which he does not have the new data).
This is the list of objects that must be fully replicated
before we can accept writes.

		at this point, the primary’s PG log contains an authoritative history of
the placement group, and the OSD now has sufficient
information to bring any other OSD in the acting set up to date.

		if the primary’s up_thru value in the current OSD map is not greater than
or equal to the first epoch in the current interval, send a request to the
monitor to update it, and wait until receive an updated OSD map that reflects
the change.

		for each member of the current acting set:

		send them log updates to bring their PG logs into agreement with
my own (authoritative history) ... which may involve deciding
to delete divergent objects.

		await acknowledgement that they have persisted the PG log entries.

		at this point all OSDs in the acting set agree on all of the meta-data,
and would (in any future peering) return identical accounts of all
updates.

		start accepting client write operations (because we have unanimous
agreement on the state of the objects into which those updates are
being accepted). Note, however, that if a client tries to write to an
object it will be promoted to the front of the recovery queue, and the
write willy be applied after it is fully replicated to the current acting set.

		update the last epoch started value in our local PG info, and instruct
other active set OSDs to do the same.

		start pulling object data updates that other OSDs have, but I do not. We may
need to query OSDs from additional past intervals prior to last epoch started
(the last time peering completed) and following last epoch clean (the last epoch that
recovery completed) in order to find copies of all objects.

		start pushing object data updates to other OSDs that do not yet have them.

We push these updates from the primary (rather than having the replicas
pull them) because this allows the primary to ensure that a replica has
the current contents before sending it an update write. It also makes
it possible for a single read (from the primary) to be used to write
the data to multiple replicas. If each replica did its own pulls,
the data might have to be read multiple times.

		once all replicas store the all copies of all objects (that
existed prior to the start of this epoch) we can update last
epoch clean in the PG info, and we can dismiss all of the
stray replicas, allowing them to delete their copies of objects
for which they are no longer in the acting set.

We could not dismiss the strays prior to this because it was possible
that one of those strays might hold the sole surviving copy of an
old object (all of whose copies disappeared before they could be
replicated on members of the current acting set).

State Model

[image: digraph G {
	size="7,7"
	compound=true;
	subgraph cluster0 {
		label = "RecoveryMachine";
		color = "blue";
		Crashed;
		Initial[shape=Mdiamond];
		Reset;
		subgraph cluster1 {
			label = "Started";
			color = "blue";
			Start[shape=Mdiamond];
			subgraph cluster2 {
				label = "Primary";
				color = "blue";
				WaitActingChange;
				subgraph cluster3 {
					label = "Peering";
					color = "blue";
					GetInfo[shape=Mdiamond];
					GetLog;
					GetMissing;
					WaitFlushedPeering;
					WaitUpThru;
					Incomplete;
				}
				Active;
			}
			ReplicaActive;
			Stray;
		}
	}
GetInfo -> WaitActingChange [label="NeedActingChange",ltail=cluster2,];
GetLog -> Incomplete [label="IsIncomplete",];
GetMissing -> WaitUpThru [label="NeedUpThru",];
GetInfo -> Active [label="Activate",ltail=cluster3,];
Initial -> Reset [label="Load",];
Initial -> GetInfo [label="MNotifyRec",lhead=cluster2,];
Initial -> Stray [label="MLogRec",];
Stray -> ReplicaActive [label="MLogRec",];
GetInfo -> GetLog [label="GotInfo",];
Start -> GetInfo [label="MakePrimary",lhead=cluster2,];
Reset -> Start [label="ActMap",lhead=cluster1,];
Start -> Reset [label="AdvMap",ltail=cluster1,];
GetInfo -> Reset [label="AdvMap",ltail=cluster3,];
GetLog -> Reset [label="AdvMap",];
WaitActingChange -> Reset [label="AdvMap",];
Start -> Stray [label="MakeStray",];
Initial -> Crashed [label="boost::statechart::event_base",];
Reset -> Crashed [label="boost::statechart::event_base",];
Start -> Crashed [label="boost::statechart::event_base",ltail=cluster1,];
Initial -> Stray [label="MInfoRec",];
Stray -> ReplicaActive [label="MInfoRec",];
Initial -> Reset [label="Initialize",];
GetMissing -> WaitFlushedPeering [label="CheckRepops",];
WaitUpThru -> WaitFlushedPeering [label="CheckRepops",];
GetLog -> GetMissing [label="GotLog",];
WaitFlushedPeering -> WaitFlushedPeering [label="FlushedEvt",];
}]

 © Copyright 2012, Inktank Storage, Inc..

dev/filestore-filesystem-compat.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

Filestore filesystem compatilibity

http://marc.info/?l=ceph-devel&m=131942130322957&w=2

Although running on ext4, xfs, or whatever other non-btrfs you want mostly
works, there are a few important remaining issues:

ext4 limits total xattrs for 4KB

This can cause problems in some cases, as Ceph uses xattrs
extensively. Most of the time we don’t hit this. We do hit the limit
with radosgw pretty easily, though, and may also hit it in exceptional
cases where the OSD cluster is very unhealthy.

There is a large xattr patch for ext4 from the Lustre folks that has been
floating around for (I think) years. Maybe as interest grows in running
Ceph on ext4 this can move upstream.

Previously we were being forgiving about large setxattr failures on ext3,
but we found that was leading to corruption in certain cases (because we
couldn’t set our internal metadata), so the next release will assert/crash
in that case (fail-stop instead of fail-maybe-eventually-corrupt).

XFS does not have an xattr size limit and thus does have this problem.

OSD journal replay of non-idempotent transactions

Resolved with full sync but not ideal.
See http://tracker.newdream.net/issues/213

On non-btrfs backends, the Ceph OSDs use a write-ahead journal. After
restart, the OSD does not know exactly which transactions in the
journal may have already been committed to disk, and may reapply a
transaction again during replay. For most operations (write, delete,
truncate) this is fine.

Some operations, though, are non-idempotent. The simplest example is
CLONE, which copies (efficiently, on btrfs) data from one object to
another. If the source object is modified, the osd restarts, and then
the clone is replayed, the target will get incorrect (newer) data. For
example,

		clone A -> B

		modify A

		<osd crash, replay from 1>

B will get new instead of old contents.

(This doesn’t happen on btrfs because the snapshots allow us to replay
from a known consistent point in time.)

Possibilities:

		full sync after any non-idempotent operation

		re-evaluate the lower level interface based on needs from higher
levels, construct only safe operations, be very careful; brittle

		use xattrs to add sequence numbers to objects:

		on non-btrfs, we set a xattr on every modified object with the
op_seq, the unique sequence number for the transaction.

		for any (potentially) non-idempotent operation, we fsync() before
continuing to the next transaction, to ensure that xattr hits disk.

		on replay, we skip a transaction if the xattr indicates we already
performed this transaction.

Because every ‘transaction’ only modifies on a single object (file),
this ought to work. It’ll make things like clone slow, but let’s
face it: they’re already slow on non-btrfs file systems because they
actually copy the data (instead of duplicating the extent refs in
btrfs). And it should make the full ObjectStore iterface safe,
without upper layers having to worry about the kinds and orders of
transactions they perform.

 © Copyright 2012, Inktank Storage, Inc..

radosgw/swift/serviceops.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		Swift-compatible API »

Service Operations

To retrieve data about our Swift-compatible service, you may execute GET
requests using the X-Storage-Url value retrieved during authentication.

List Containers

A GET request that specifies the API version and the account will return
a list of containers for a particular user account. Since the request returns
a particular user’s containers, the request requires an authentication token.
The request cannot be made anonymously.

Syntax

GET /{api version}/{account} HTTP/1.1
Host: {fqdn}
X-Auth-Token: {auth-token}

Request Parameters

limit

		Description:		Limits the number of results to the specified value.

		Type:		Integer

		Required:		No

format

		Description:		Defines the format of the result.

		Type:		String

		Valid Values:		json | xml

		Required:		No

marker

		Description:		Returns a list of results greater than the marker value.

		Type:		String

		Required:		No

Response Entities

The response contains a list of containers, or returns with an HTTP
204 response code

account

		Description:		A list for account information.

		Type:		Container

container

		Description:		The list of containers.

		Type:		Container

name

		Description:		The name of a container.

		Type:		String

bytes

		Description:		The size of the container.

		Type:		Integer

 © Copyright 2012, Inktank Storage, Inc..

search.html

 Navigation

 		
 index

 		
 modules |

 		Ceph documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012, Inktank Storage, Inc..

control.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

Control commands

Monitor commands

Monitor commands are issued using the ceph utility:

$ ceph [-m monhost] command

where the command is usually (though not always) of the form:

$ ceph subsystem command

System commands

$ ceph -s
$ ceph status

Shows an overview of the current status of the cluster.

$ ceph -w

Shows a running summary of the status of the cluster, and major events.

$ ceph quorum_status

Show the monitor quorum, including which monitors are participating and which one
is the leader.

$ ceph [-m monhost] mon_status

Query the status of a single monitor, including whether or not it is in the quorum.

AUTH subsystem

$ ceph auth add <osd> <--in-file|-i> <path-to-osd-keyring>

Add auth keyring for an osd.

$ ceph auth list

Show auth key OSD subsystem.

PG subsystem

$ ceph -- pg dump [--format <format>]

Output the stats of all pgs. Valid formats are “plain” and “json”,
and plain is the default.

$ ceph -- pg dump_stuck inactive|unclean|stale [--format <format>] [-t|--threshold <seconds>]

Output the stats of all PGs stuck in the specified state.

--format may be plain (default) or json

--threshold defines how many seconds “stuck” is (default: 300)

Inactive PGs cannot process reads or writes because they are waiting for an OSD
with the most up-to-date data to come back.

Unclean PGs contain objects that are not replicated the desired number
of times. They should be recovering.

Stale PGs are in an unknown state - the OSDs that host them have not
reported to the monitor cluster in a while (configured by
mon_osd_report_timeout).

$ ceph pg <pgid> mark_unfound_lost revert

Revert “lost” objects to their prior state, either a previous version
or delete them if they were just created.

OSD subsystem

$ ceph osd stat

Query osd subsystem status.

$ ceph osd getmap -o file

Write a copy of the most recent osd map to a file. See
osdmaptool.

$ ceph osd getcrushmap -o file

Write a copy of the crush map from the most recent osd map to
file. This is functionally equivalent to

$ ceph osd getmap -o /tmp/osdmap
$ osdmaptool /tmp/osdmap --export-crush file

$ ceph osd dump [--format <format>]

Dump the osd map. Valid formats for -f are “plain” and “json”. If no
–format option is given, the osd map is dumped as plain text.

$ ceph osd tree [--format <format>]

Dump the osd map as a tree with one line per osd containing weight
and state.

$ ceph osd crush set <id> <name> <weight> [<loc1> [<loc2> ...]]

Add or move a new item (osd) with the given id/name/weight at the specified
location.

$ ceph osd crush remove <id>

Remove an existing item from the crush map.

$ ceph osd crush move <id> <loc1> [<loc2> ...]

Move an existing bucket from one position in the hierarchy to another.

$ ceph osd crush reweight <name> <weight>

Set the weight of the item given by <name> to <weight>.

$ ceph osd cluster_snap <name>

Create a cluster snapshot.

$ ceph osd lost [--yes-i-really-mean-it]

Mark an OSD as lost. This may result in permanent data loss. Use with caution.

$ ceph osd create [<id>]

Create a new OSD. If no ID is given, a new ID is automatically selected
if possible.

$ ceph osd rm [<id>...]

Remove the given OSD(s).

$ ceph osd getmaxosd

Query the current max_osd parameter in the osd map.

$ ceph osd setmap -i file

Import the given osd map. Note that this can be a bit dangerous,
since the osd map includes dynamic state about which OSDs are current
on or offline; only do this if you’ve just modified a (very) recent
copy of the map.

$ ceph osd setcrushmap -i file

Import the given crush map.

$ ceph osd setmaxosd

Set the max_osd parameter in the osd map. This is necessary when
expanding the storage cluster.

$ ceph osd down N

Mark osdN down.

$ ceph osd out N

Mark osdN out of the distribution (i.e. allocated no data).

$ ceph osd in N

Mark osdN in the distribution (i.e. allocated data).

$ ceph class list

List classes that are loaded in the ceph cluster.

$ ceph osd pause
$ ceph osd unpause

Set or clear the pause flags in the OSD map. If set, no IO requests
will be sent to any OSD. Clearing the flags via unpause results in
resending pending requests.

$ ceph osd reweight N W

Set the weight of osdN to W. Two OSDs with the same weight will receive
roughly the same number of I/O requests and store approximately the
same amount of data.

$ ceph osd reweight-by-utilization [threshold]

Reweights all the OSDs by reducing the weight of OSDs which are
heavily overused. By default it will adjust the weights downward on
OSDs which have 120% of the average utilization, but if you include
threshold it will use that percentage instead.

$ ceph osd blacklist add ADDRESS[:source_port] [TIME]
$ ceph osd blacklist rm ADDRESS[:source_port]

Adds/removes the address to/from the blacklist. When adding an address,
you can specify how long it should be blacklisted in seconds; otherwise
it will default to 1 hour. A blacklisted address is prevented from
connecting to any osd. Blacklisting is most often used to prevent a
laggy mds making bad changes to data on the osds.

These commands are mostly only useful for failure testing, as
blacklists are normally maintained automatically and shouldn’t need
manual intervention.

$ ceph osd pool mksnap POOL SNAPNAME
$ ceph osd pool rmsnap POOL SNAPNAME

Creates/deletes a snapshot of a pool.

$ ceph osd pool create POOL [pg_num [pgp_num]]
$ ceph osd pool delete POOL
$ ceph osd pool rename OLDNAME NEWNAME

Creates/deletes/renames a storage pool.

$ ceph osd pool set POOL FIELD VALUE

Changes a pool setting. Valid fields are:

		size: Sets the number of copies of data in the pool.

		crash_replay_interval: The number of seconds to allow
clients to replay acknowledged but uncommited requests.

		pg_num: The placement group number.

		pgp_num: Effective number when calculating pg placement.

		crush_ruleset: rule number for mapping placement.

$ ceph osd pool get POOL FIELD

Get the value of a pool setting. Valid fields are:

		pg_num: See above.

		pgp_num: See above.

		lpg_num: The number of local PGs.

		lpgp_num: The number used for placing the local PGs.

$ ceph osd scrub N

Sends a scrub command to osdN. To send the command to all osds, use *.
TODO: what does this actually do

$ ceph osd repair N

Sends a repair command to osdN. To send the command to all osds, use *.
TODO: what does this actually do

$ ceph osd tell N bench [BYTES_PER_WRITE] [TOTAL_BYTES]

Runs a simple throughput benchmark against osdN, writing TOTAL_BYTES
in write requests of BYTES_PER_WRITE each. By default, the test
writes 1 GB in total in 4-MB increments.

MDS subsystem

Change configuration parameters on a running mds.

$ ceph mds tell <mds-id> injectargs '--<switch> <value> [--<switch> <value>]'

Example:

$ ceph mds tell 0 injectargs '--debug_ms 1 --debug_mds 10'

Enables debug messages.

$ ceph mds stat

Displays the status of all metadata servers.

Todo

ceph mds subcommands missing docs: set_max_mds, dump, getmap, stop, setmap

Mon subsystem

Show monitor stats:

$ ceph mon stat
2011-12-14 10:40:59.044395 mon <- [mon,stat]
2011-12-14 10:40:59.057111 mon.1 -> 'e3: 5 mons at {a=10.1.2.3:6789/0,b=10.1.2.4:6789/0,c=10.1.2.5:6789/0,d=10.1.2.6:6789/0,e=10.1.2.7:6789/0}, election epoch 16, quorum 0,1,2,3' (0)

The quorum list at the end lists monitor nodes that are part of the current quorum.

This is also available more directly:

$./ceph quorum_status
2011-12-14 10:44:20.417705 mon <- [quorum_status]
2011-12-14 10:44:20.431890 mon.0 -> '{ "election_epoch": 10,
 "quorum": [
 0,
 1,
 2],
 "monmap": { "epoch": 1,
 "fsid": "444b489c-4f16-4b75-83f0-cb8097468898",
 "modified": "2011-12-12 13:28:27.505520",
 "created": "2011-12-12 13:28:27.505520",
 "mons": [
 { "rank": 0,
 "name": "a",
 "addr": "127.0.0.1:6789\/0"},
 { "rank": 1,
 "name": "b",
 "addr": "127.0.0.1:6790\/0"},
 { "rank": 2,
 "name": "c",
 "addr": "127.0.0.1:6791\/0"}]}}' (0)

The above will block until a quorum is reached.

For a status of just the monitor you connect to (use -m HOST:PORT
to select):

$./ceph mon_status
2011-12-14 10:45:30.644414 mon <- [mon_status]
2011-12-14 10:45:30.644632 mon.0 -> '{ "name": "a",
 "rank": 0,
 "state": "leader",
 "election_epoch": 10,
 "quorum": [
 0,
 1,
 2],
 "outside_quorum": [],
 "monmap": { "epoch": 1,
 "fsid": "444b489c-4f16-4b75-83f0-cb8097468898",
 "modified": "2011-12-12 13:28:27.505520",
 "created": "2011-12-12 13:28:27.505520",
 "mons": [
 { "rank": 0,
 "name": "a",
 "addr": "127.0.0.1:6789\/0"},
 { "rank": 1,
 "name": "b",
 "addr": "127.0.0.1:6790\/0"},
 { "rank": 2,
 "name": "c",
 "addr": "127.0.0.1:6791\/0"}]}}' (0)

A dump of the monitor state:

$ ceph mon dump
2011-12-14 10:43:08.015333 mon <- [mon,dump]
2011-12-14 10:43:08.015567 mon.0 -> 'dumped monmap epoch 1' (0)
epoch 1
fsid 444b489c-4f16-4b75-83f0-cb8097468898
last_changed 2011-12-12 13:28:27.505520
created 2011-12-12 13:28:27.505520
0: 127.0.0.1:6789/0 mon.a
1: 127.0.0.1:6790/0 mon.b
2: 127.0.0.1:6791/0 mon.c

 © Copyright 2012, Inktank Storage, Inc..

_static/comment-close.png

ops/manage/failures/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operations »

 		Managing a Ceph cluster »

Recovering from failures

The current health of the Ceph cluster, as known by the monitors, can
be checked with the ceph health command. If all is well, you get:

$ ceph health
HEALTH_OK

If there are problems, you will see something like:

$ ceph health
HEALTH_WARN short summary of problem(s)

or:

$ ceph health
HEALTH_ERROR short summary of very serious problem(s)

To get more detail:

$ ceph health detail
HEALTH_WARN short description of problem

one problem
another problem
yet another problem
...

		Recovering from ceph-mon failure
		Replacing a monitor

		Recovering from ceph-osd failure
		Single ceph-osd failure

		Full cluster

		Homeless placement groups (PGs)

		Stuck PGs

		PG down (peering failure)

		Unfound objects

		Slow or unresponsive ceph-osd

		Flapping OSDs

		Recovering from ceph-mds failure

		Recovering from radosgw failure
		HTTP Request Errors

		Crashed radosgw process

		Blocked radosgw Requests

 © Copyright 2012, Inktank Storage, Inc..

init/stop-cluster.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operating a Cluster »

Stopping a Cluster

To stop a cluster, execute one of the following:

sudo service -a ceph stop
sudo /etc/init.d/ceph -a stop

Ceph should shut down the operating processes.

 © Copyright 2012, Inktank Storage, Inc..

_static/up-pressed.png

radosgw/swift/python.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		Swift-compatible API »

Python Swift Examples

Create a Connection

This creates a connection so that you can interact with the server:

import cloudfiles
username = 'account_name:username'
api_key = 'your_api_key'

conn = cloudfiles.get_connection(
 username=username,
 api_key=api_key,
 authurl='https://objects.dreamhost.com/auth',
)

Create a Container

This creates a new container called my-new-container:

container = conn.create_container('my-new-container')

Create an Object

This creates a file hello.txt from the file named my_hello.txt:

obj = container.create_object('hello.txt')
obj.content_type = 'text/plain'
obj.load_from_filename('./my_hello.txt')

List Owned Containers

This gets a list of containers that you own, and prints out the container name:

for container in conn.get_all_containers():
 print container.name

The output will look something like this:

mahbuckat1
mahbuckat2
mahbuckat3

List a Container’s Content

This gets a list of objects in the container, and prints out each
object’s name, the file size, and last modified date:

for obj in container.get_objects():
 print "{0}\t{1}\t{2}".format(obj.name, obj.size, obj.last_modified)

The output will look something like this:

myphoto1.jpg 251262 2011-08-08T21:35:48.000Z
myphoto2.jpg 262518 2011-08-08T21:38:01.000Z

Retrieve an Object

This downloads the object hello.txt and saves it in
./my_hello.txt:

obj = container.get_object('hello.txt')
obj.save_to_filename('./my_hello.txt')

Delete an Object

This deletes the object goodbye.txt:

container.delete_object('goodbye.txt')

Delete a Container

Note

The container must be empty! Otherwise the request won’t work!

conn.delete_container(container.name)

 © Copyright 2012, Inktank Storage, Inc..

config-cluster/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

Configuration

Ceph can run with a cluster containing thousands of Object Storage Devices
(OSDs). A minimal system will have at least two OSDs for data replication. To
configure OSD clusters, you must provide settings in the configuration file.
Ceph provides default values for many settings, which you can override in the
configuration file. Additionally, you can make runtime modification to the
configuration using command-line utilities.

When Ceph starts, it activates three daemons:

		ceph-osd (mandatory)

		ceph-mon (mandatory)

		ceph-mds (mandatory for cephfs only)

Each process, daemon or utility loads the host’s configuration file. A process
may have information about more than one daemon instance (i.e., multiple
contexts). A daemon or utility only has information about a single daemon
instance (a single context).

Note

Ceph can run on a single host for evaluation purposes.

		Hard Disk and File System Recommendations

		Configuration
		Creating ceph.conf
		Configuration File Basics

		Metavariables

		Global Settings

		Process/Daemon Settings
		OSD Settings

		Monitor Settings

		Metadata Server Settings

		Instance Settings

		host and addr Settings

		Monitor Configuration

		Example Configuration File

		iptables Configuration

		Deploy with mkcephfs
		Enable Login to Cluster Hosts as root

		Copy Configuration File to All Hosts

		Create the Default Directories

		Run mkcephfs

		Deploy with Chef
		Clone the Required Cookbooks

		Add the Required Cookbook Paths

		Install the Cookbooks

		Configure your Ceph Environment

		Configure the Roles

		Configure Nodes

		Prepare OSD Disks

		Run chef-client on each Node

		Proceed to Operating the Cluster

		Storage Pools
		List Pools

		Create a Pool

		Remove a Pool

		Show Pool Stats

		Authentication
		Enabling Authentication

		The client.admin Key

		Generate a Key

		List Keys in your Cluster

		Daemon keyrings

 © Copyright 2012, Inktank Storage, Inc..

rbd/libvirt.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Block Devices »

Using libvirt with Ceph RBD

The libvirt library creates a virtual machine abstraction layer between
hypervisor interfaces and the software applications that use them. With
libvirt, developers and system administrators can focus on a common
management framework, common API, and common shell interface (i.e., virsh)
to many different hypervisors, including:

		QEMU/KVM

		XEN

		LXC

		VirtualBox

		etc.

Ceph RADOS block devices support QEMU/KVM, which means you can use RADOS
block devices with software that interfaces with libvirt. For example,
OpenStack’s integration to Ceph uses libvirt to interact with QEMU/KVM,
and QEMU/KVM interacts with RADOS block devices via librbd.

See libvirt Virtualization API [http://www.libvirt.org] for details.

Installing libvirt on Ubuntu 12.04 Precise

libvirt packages are incorporated into the Ubuntu 12.04 precise
distribution. To install libvirt on precise, execute the following:

sudo apt-get update && sudo apt-get install libvirt-bin

Installing libvirt on Earlier Versions of Ubuntu

For Ubuntu distributions 11.10 oneiric and earlier, you must build
libvirt from source. Clone the libvirt repository, and use
AutoGen [http://www.gnu.org/software/autogen/] to generate the build. Then execute make and
make install to complete the installation. For example:

git clone git://libvirt.org/libvirt.git
cd libvirt
./autogen.sh
make
sudo make install

See libvirt Installation [http://www.libvirt.org/compiling.html] for details.

 © Copyright 2012, Inktank Storage, Inc..

man/8/ceph-debugpack.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

ceph-debugpack – ceph debug packer utility

Synopsis

ceph-debugpack [options] filename.tar.gz

Description

ceph-debugpack will build a tarball containing various items that are
useful for debugging crashes. The resulting tarball can be shared with
Ceph developers when debugging a problem.

The tarball will include the binaries for ceph-mds, ceph-osd, and ceph-mon, any
log files, the ceph.conf configuration file, any core files we can
find, and (if the system is running) dumps of the current osd, mds,
and pg maps from the monitor.

Options

		
-c ceph.conf, --conf=ceph.conf

		Use ceph.conf configuration file instead of the default
/etc/ceph/ceph.conf to determine monitor addresses during
startup.

Availability

ceph-debugpack is part of the Ceph distributed file system. Please
refer to the Ceph documentation at http://ceph.com/docs for more
information.

See also

ceph(8)

 © Copyright 2012, Inktank Storage, Inc..

dev/libs.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

Library architecture

Ceph is structured into libraries which are built and then combined together to
make executables and other libraries.

		libcommon: a collection of utilities which are available to nearly every ceph
library and executable. In general, libcommon should not contain global
variables, because it is intended to be linked into libraries such as
libcephfs.so.

		libglobal: a collection of utilities focused on the needs of Ceph daemon
programs. In here you will find pidfile management functions, signal
handlers, and so forth.

Todo

document other libraries

 © Copyright 2012, Inktank Storage, Inc..

man/8/ceph-fuse.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

ceph-fuse – FUSE-based client for ceph

Synopsis

ceph-fuse [-m monaddr:port] mountpoint [fuse options]

Description

ceph-fuse is a FUSE (File system in USErspace) client for Ceph
distributed file system. It will mount a ceph file system (specified
via the -m option for described by ceph.conf (see below) at the
specific mount point.

The file system can be unmounted with:

fusermount -u mountpoint

or by sending SIGINT to the ceph-fuse process.

Options

Any options not recognized by ceph-fuse will be passed on to libfuse.

		
-d

		Detach from console and daemonize after startup.

		
-c ceph.conf, --conf=ceph.conf

		Use ceph.conf configuration file instead of the default
/etc/ceph/ceph.conf to determine monitor addresses during startup.

		
-m monaddress[:port]

		Connect to specified monitor (instead of looking through ceph.conf).

		
-r root_directory

		Use root_directory as the mounted root, rather than the full Ceph tree.

Availability

ceph-fuse is part of the Ceph distributed file system. Please refer to
the Ceph documentation at http://ceph.com/docs for more information.

See also

fusermount(8),
ceph(8)

 © Copyright 2012, Inktank Storage, Inc..

_static/comment.png

rbd/rbd-openstack.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Block Devices »

RBD and OpenStack

You may utilize RBD with OpenStack. To use RBD with OpenStack, you must install
QEMU, libvirt, and OpenStack first. We recommend using a separate physical
host for your OpenStack installation. OpenStack recommends a minimum of
8GB of RAM and a quad-core processor. If you have not already installed
OpenStack, install it now. See Installing OpenStack for details.

Important

To use RBD with OpenStack, you must have a running Ceph cluster.

Create a Pool

By default, RBD uses the data pool. You may use any available RBD pool.
We recommend creating a pool for Nova. Ensure your Ceph cluster is running,
then create a pool.

sudo rados mkpool nova

Install Ceph Common on the OpenStack Host

OpenStack operates as a Ceph client. You must install Ceph common on the
OpenStack host, and copy your Ceph cluster’s ceph.conf file to the
/etc/ceph directory. If you have installed Ceph on the host, Ceph common
is already included.

sudo apt-get install ceph-common
cd /etc/ceph
ssh your-openstack-server sudo tee /etc/ceph/ceph.conf <ceph.conf

Add the RBD Driver and the Pool Name to nova.conf

OpenStack requires a driver to interact with RADOS block devices. You must also
specify the pool name for the block device. On your OpenStack host, navigate to
the /etc/conf directory. Open the nova.conf file in a text editor using
sudo privileges and add the following lines to the file:

volume_driver=nova.volume.driver.RBDDriver
rbd_pool=nova

Restart OpenStack

To activate the RBD driver and load the RBD pool name into the configuration,
you must restart OpenStack. Navigate the directory where you installed
OpenStack, and execute the following:

./rejoin-stack.sh

If you have OpenStack configured as a service, you can also execute:

sudo service nova-volume restart

Once OpenStack is up and running, you should be able to create a volume with
OpenStack on a Ceph RADOS block device.

 © Copyright 2012, Inktank Storage, Inc..

ops/monitor.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operations »

Monitoring Ceph

Todo

write me

 © Copyright 2012, Inktank Storage, Inc..

radosgw/config-ref.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

RADOS Gateway Configuration Reference

The following settings may added to the ceph.conf file. The settings may
contain default values. If you do not specify each setting in ceph.conf,
the default value will be set automatically.

rgw data

		Description:		Sets the location of the data file for RADOS Gateway.

		Default:		/var/lib/ceph/radosgw/$cluster-$id

rgw cache enabled

		Description:		Whether the RADOS Gateway cache is enabled.

		Default:		true

rgw cache lru size

		Description:		The number of entries in the RADOS Gateway cache.

		Default:		10000

rgw socket path

		Description:		The socket path for the domain socket. FastCgiExternalServer uses this socket. If you do not specify a socket path, RADOS Gateway will not run as an external server. The path you specify here must be the same as the path specified in the rgw.conf file.

		Default:		N/A

		Required:		True

		Example:		/var/run/ceph/rgw.sock

rgw dns name

		Description:		The name of the DNS host.

		Default:		Same as the host’s DNS.

rgw swift url

		Description:		The URL for the RADOS Gateway Swift API.

		Default:		Same as the host setting.

rgw swift url prefix

		Description:		The URL prefix for the Swift API.

		Default:		swift

		Example:		http://swift.fqdn.com

rgw enforce swift acls

		Description:		Enforces the Swift Access Control List (ACL) settings.

		Default:		true

rgw print continue

		Description:		Enable 100-continue if it is operational.

		Default:		true

rgw remote addr param

		Description:		The remote address parameter. For example, a variable for the X-Forwarded-For address if a reverse proxy is operational.

		Default:		REMOTE_ADDR

rgw op thread timeout

		Description:		The timeout in milliseconds for open threads.

		Default:		600

rgw op thread suicide timeout

		Description:		<placeholder>

		Default:		<placeholder>

rgw thread pool size

		Description:		The size of the thread pool.

		Default:		100 threads.

rgw maintenance tick interval

		Description:		<placeholder>

		Default:		10.0

rgw pools preallocate max

		Description:		The maximum number of pool to pre-allocate to RADOS Gateway.

		Default:		100

rgw pools preallocate threshold

		Description:		The pool pre-allocation threshold. <placeholder>

		Default:		70

rgw log nonexistent bucket

		Description:		Should RADOS GW log a request for a non-existent bucket?

		Default:		false

rgw log object name

		Description:		The logging format for an object name. // man date to see codes (a subset are supported)

		Default:		“%Y-%m-%d-%H-%i-%n”

rgw log object name utc

		Description:		<placeholder>

		Default:		false

rgw usage max shards

		Description:		The maximum number of shards.

		Default:		32

rgw usage max user shards

		Description:		The maximum number of shards per user.

		Default:		1

rgw enable ops log

		Description:		Enable logging for every RGW operation?

		Default:		true

rgw enable usage log

		Description:		Log bandwidth usage?

		Default:		true

rgw usage log flush threshold

		Description:		The threshold to flush pending log data.

		Default:		1024

rgw usage log tick interval

		Description:		Flush pending log data every n seconds.

		Default:		30

rgw intent log object name

		Description:		The logging format for <placeholder>. // man date to see codes (a subset are supported)

		Default:		“%Y-%m-%d-%i-%n”

rgw intent log object name utc

		Description:		Whether the intent log object name should use Coordinated Universal Time (UTC).

		Default:		false

rgw init timeout

		Description:		The timeout threshold in seconds.

		Default:		30

rgw mime types file

		Description:		The path and location of the MIME types.

		Default:		/etc/mime.types

 © Copyright 2012, Inktank Storage, Inc..

cephfs/fstab.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Ceph FS »

Mount Ceph FS in your File Systems Table

If you mount Ceph FS in your file systems table, the Ceph file system will mount
automatically on startup. To mount Ceph FS in your file systems table, add the
following to /etc/fstab:

{ipaddress}:{port}:/ {mount}/{mountpoint} {filesystem-name} [name=username,secret=secretkey|secretfile=/path/to/secretfile],[{mount.options}]

For example:

10.10.10.10:6789:/ /mnt/ceph ceph name=admin,secretfile=/etc/ceph/secret.key,noauto,rw,noexec,nodev,noatime,nodiratime 0 2

Important

The name and secret or secretfile options are
mandatory when you have Ceph authentication running. See Authentication
for details.

 © Copyright 2012, Inktank Storage, Inc..

rec/data-placement.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Recommendations »

Data placement

Todo

brief intro to CRUSH, pointers to more

Todo

Considerations and tradeoffs of different placement policies

 © Copyright 2012, Inktank Storage, Inc..

man/8/monmaptool.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

monmaptool – ceph monitor cluster map manipulation tool

Synopsis

monmaptool mapfilename [–clobber] [–print] [–create]
[–add ip:port ...] [–rm ip:port ...]

Description

monmaptool is a utility to create, view, and modify a monitor
cluster map for the Ceph distributed file system. The monitor map
specifies the only fixed addresses in the Ceph distributed system.
All other daemons bind to arbitrary addresses and register themselves
with the monitors.

When creating a map with –create, a new monitor map with a new,
random UUID will be created. It should be followed by one or more
monitor addresses.

The default Ceph monitor port is 6789.

Options

		
--print

		will print a plaintext dump of the map, after any modifications are
made.

		
--clobber

		will allow monmaptool to overwrite mapfilename if changes are made.

		
--create

		will create a new monitor map with a new UUID (and with it, a new,
empty Ceph file system).

		
--generate

		generate a new monmap based on the values on the command line or specified
in the ceph configuration. This is, in order of preference,

		--monmap filename to specify a monmap to load

		--mon-host 'host1,ip2' to specify a list of hosts or ip addresses

		[mon.foo] sections containing mon addr settings in the config

		
--filter-initial-members

		filter the initial monmap by applying the mon initial members
setting. Monitors not present in that list will be removed, and
initial members not present in the map will be added with dummy
addresses.

		
--add name ip:port

		will add a monitor with the specified ip:port to the map.

		
--rm name

		will remove the monitor with the specified ip:port from the map.

		
--fsid uuid

		will set the fsid to the given uuid. If not specified with –create, a random fsid will be generated.

Example

To create a new map with three monitors (for a fresh Ceph file system):

monmaptool --create --add mon.a 192.168.0.10:6789 --add mon.b 192.168.0.11:6789 \
 --add mon.c 192.168.0.12:6789 --clobber monmap

To display the contents of the map:

monmaptool --print onmap

To replace one monitor:

monmaptool --rm mon.a --add mon.a 192.168.0.9:6789 --clobber monmap

Availability

monmaptool is part of the Ceph distributed file system. Please
refer to the Ceph documentation at http://ceph.com/docs for more
information.

See also

ceph(8),
crushtool(8),
mkcephfs(8)

 © Copyright 2012, Inktank Storage, Inc..

ops/manage/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operations »

Managing a Ceph cluster

		Managing crypto keys
		Types of keys

		Capabilities

		Adding a new key

		Setting capabilities for a key

		Revoking a key

		Growing or shrinking a Ceph cluster
		Resizing the RADOS cluster
		Adding a new OSD to the cluster

		Removing OSDs

		Tuning Placement Groups
		Purpose

		Optimal total PG count

		Multiple pools

		Splitting/merging PGs

		Resizing the metadata cluster
		Adding new MDSes
		Setting up standby and standby-replay MDSes

		Removing MDSes

		Resizing the monitor cluster
		Adding a monitor

		Removing a monitor from a healthy cluster

		Removing a monitor from an unhealthy or down cluster

		Recovering from failures
		Recovering from ceph-mon failure
		Replacing a monitor

		Recovering from ceph-osd failure
		Single ceph-osd failure

		Full cluster

		Homeless placement groups (PGs)

		Stuck PGs

		PG down (peering failure)

		Unfound objects

		Slow or unresponsive ceph-osd

		Flapping OSDs

		Recovering from ceph-mds failure

		Recovering from radosgw failure
		HTTP Request Errors

		Crashed radosgw process

		Blocked radosgw Requests

		Adjusting the CRUSH map
		Adding a new device (OSD) to the map

		Moving a bucket to a different position in the hierarchy

		Adjusting the CRUSH weight

		Removing a device

		Managing RADOS pools
		Creating new pools

		Authorizing access to pools

		Custom pool layouts with CRUSH

		Managing Cephfs
		Mounting
		Kernel client

		FUSE

		Using custom pools for subtrees

Todo

		./ceph usage

		./rados usage

 © Copyright 2012, Inktank Storage, Inc..

start/quick-start.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Getting Started »

5-minute Quick Start

Thank you for trying Ceph! Petabyte-scale data clusters are quite an
undertaking. Before delving deeper into Ceph, we recommend setting up a
cluster on a single host to explore some of the functionality.

Ceph 5-Minute Quick Start is intended for use on one machine with a
recent Debian/Ubuntu operating system. The intent is to help you exercise
Ceph functionality without the deployment overhead associated with a
production-ready storage cluster.

Install Debian/Ubuntu

Install a recent release of Debian or Ubuntu (e.g., 12.04 precise).

Add Ceph Packages

To get the latest Ceph packages, add a release key to APT, add a source
location to your /etc/apt/sources.list, update your system and
install Ceph.

wget -q -O- https://raw.github.com/ceph/ceph/master/keys/release.asc | sudo apt-key add -
echo deb http://ceph.com/debian/ $(lsb_release -sc) main | sudo tee /etc/apt/sources.list.d/ceph.list
sudo apt-get update && sudo apt-get install ceph

Add a Configuration File

Modify the contents of the following configuration file such that
localhost is the actual host name, and the monitor IP address
is the actual IP address of the host (i.e., not 127.0.0.1).Then,
copy the contents of the modified configuration file and save it to
/etc/ceph/ceph.conf. This file will configure Ceph to operate a monitor,
two OSD daemons and one metadata server on your local machine.

[osd]
	osd journal size = 1000
	filestore xattr use omap = true

[mon.a]
	host = localhost
	mon addr = 127.0.0.1:6789

[osd.0]
	host = localhost

[osd.1]
	host = localhost

[mds.a]
	host = localhost

Deploy the Configuration

To deploy the configuration, create a directory for each daemon as follows:

sudo mkdir /var/lib/ceph/osd/ceph-0
sudo mkdir /var/lib/ceph/osd/ceph-1
sudo mkdir /var/lib/ceph/mon/ceph-a
sudo mkdir /var/lib/ceph/mds/ceph-a

cd /etc/ceph
sudo mkcephfs -a -c /etc/ceph/ceph.conf -k ceph.keyring

Start the Ceph Cluster

Once you have deployed the configuration, start the Ceph cluster.

sudo service ceph start

Check the health of your Ceph cluster to ensure it is ready.

ceph health

If your cluster echoes back HEALTH_OK, you may begin using your cluster.

 © Copyright 2012, Inktank Storage, Inc..

_images/graphviz-600f5c5af5f8c9e792cb9e59a3c179483f1742c3.png

_static/ajax-loader.gif

ops/manage/grow/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operations »

 		Managing a Ceph cluster »

Growing or shrinking a Ceph cluster

Todo

write me

		Resizing the RADOS cluster
		Adding a new OSD to the cluster

		Removing OSDs

		Tuning Placement Groups
		Purpose

		Optimal total PG count

		Multiple pools

		Splitting/merging PGs

		Resizing the metadata cluster
		Adding new MDSes
		Setting up standby and standby-replay MDSes

		Removing MDSes

		Resizing the monitor cluster
		Adding a monitor

		Removing a monitor from a healthy cluster

		Removing a monitor from an unhealthy or down cluster

 © Copyright 2012, Inktank Storage, Inc..

radosgw/s3.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

RADOS S3 API

Ceph supports a RESTful API that is compatible with the the basic data access model of the Amazon S3 API.

API

		Common

		Authentication

		Service Ops

		Bucket Ops

		Object Ops

		C++

		C#

		Java

		Perl

		PHP

		Python

		Ruby

Features Support

The following table describes the support status for current Amazon S3 functional features:

		Feature
		Status
		Remarks

		List Buckets
		Supported
		

		Delete Bucket
		Supported
		

		Create Bucket
		Supported
		Different set of canned ACLs

		Bucket Lifecycle
		Not Supported
		

		Policy (Buckets, Objects)
		Not Supported
		ACLs are supported

		Bucket Website
		Not Supported
		

		Bucket ACLs (Get, Put)
		Supported
		Different set of canned ACLs

		Bucket Location
		Not Supported
		

		Bucket Notification
		Not Supported
		

		Bucket Object Versions
		Not Supported
		

		Get Bucket Info (HEAD)
		Supported
		

		Bucket Request Payment
		Not Supported
		

		Put Object
		Supported
		

		Delete Object
		Supported
		

		Get Object
		Supported
		

		Object ACLs (Get, Put)
		Supported
		

		Get Object Info (HEAD)
		Supported
		

		POST Object
		Not Supported
		

		Copy Object
		Supported
		

		Multipart Uploads
		Supported
		(missing Copy Part)

Unsupported Header Fields

The following common request header fields are not supported:

		Name
		Type

		x-amz-security-token
		Request

		Server
		Response

		x-amz-delete-marker
		Response

		x-amz-id-2
		Response

		x-amz-request-id
		Response

		x-amz-version-id
		Response

 © Copyright 2012, Inktank Storage, Inc..

man/8/librados-config.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

librados-config – display information about librados

Synopsis

librados-config [–version] [–vernum]

Description

		librados-config is a utility that displays information about the

		installed librados.

Options

		
--version

		Display librados version

		
--vernum

		Display the librados version code

Availability

librados-config is part of the Ceph distributed file system.
Please refer to the Ceph documentation at http://ceph.com/docs for
more information.

See also

ceph(8),
rados(8)

 © Copyright 2012, Inktank Storage, Inc..

ops/rbd.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operations »

RBD setup and administration

 © Copyright 2012, Inktank Storage, Inc..

api/librados.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		API Documentation »

Librados (C)

Librados provides low-level access to the RADOS service. For an
overview of RADOS, see Architecture of Ceph.

Example: connecting and writing an object

To use Librados, you instantiate a rados_t variable (a cluster handle) and
call rados_create() with a pointer to it:

int err;
rados_t cluster;

err = rados_create(&cluster, NULL);
if (err < 0) {
 fprintf(stderr, "%s: cannot create a cluster handle: %s\n", argv[0], strerror(-err));
 exit(1);
}

Then you configure your rados_t to connect to your cluster,
either by setting individual values (rados_conf_set()),
using a configuration file (rados_conf_read_file()), using
command line options (rados_conf_parse_argv()), or an
environment variable (rados_conf_parse_env()):

err = rados_conf_read_file(cluster, "/path/to/myceph.conf");
if (err < 0) {
 fprintf(stderr, "%s: cannot read config file: %s\n", argv[0], strerror(-err));
 exit(1);
}

Once the cluster handle is configured, you can connect to the cluster with rados_connect():

err = rados_connect(cluster);
if (err < 0) {
 fprintf(stderr, "%s: cannot connect to cluster: %s\n", argv[0], strerror(-err));
 exit(1);
}

Then you open an “IO context”, a rados_ioctx_t, with rados_ioctx_create():

rados_ioctx_t io;
char *poolname = "mypool";

err = rados_ioctx_create(cluster, poolname, &io);
if (err < 0) {
 fprintf(stderr, "%s: cannot open rados pool %s: %s\n", argv[0], poolname, strerror(-err));
 rados_shutdown(cluster);
 exit(1);
}

Note that the pool you try to access must exist.

Then you can use the RADOS data manipulation functions, for example
write into an object called greeting with
rados_write_full():

err = rados_write_full(io, "greeting", "hello", 5);
if (err < 0) {
 fprintf(stderr, "%s: cannot write pool %s: %s\n", argv[0], poolname, strerror(-err));
 rados_ioctx_destroy(io);
 rados_shutdown(cluster);
 exit(1);
}

In the end, you’ll want to close your IO context and connection to RADOS with rados_ioctx_destroy() and rados_shutdown():

rados_ioctx_destroy(io);
rados_shutdown(cluster);

Asychronous IO

When doing lots of IO, you often don’t need to wait for one operation
to complete before starting the next one. Librados provides
asynchronous versions of several operations:

		rados_aio_write()

		rados_aio_append()

		rados_aio_write_full()

		rados_aio_read()

For each operation, you must first create a
rados_completion_t that represents what to do when the
operation is safe or complete by calling
rados_aio_create_completion(). If you don’t need anything
special to happen, you can pass NULL:

rados_completion_t comp;
err = rados_aio_create_completion(NULL, NULL, NULL, &comp);
if (err < 0) {
 fprintf(stderr, "%s: could not create aio completion: %s\n", argv[0], strerror(-err));
 rados_ioctx_destroy(io);
 rados_shutdown(cluster);
 exit(1);
}

Now you can call any of the aio operations, and wait for it to
be in memory or on disk on all replicas:

err = rados_aio_write(io, "foo", comp, "bar", 3, 0);
if (err < 0) {
 fprintf(stderr, "%s: could not schedule aio write: %s\n", argv[0], strerror(-err));
 rados_aio_release(comp);
 rados_ioctx_destroy(io);
 rados_shutdown(cluster);
 exit(1);
}
rados_wait_for_complete(comp); // in memory
rados_wait_for_safe(comp); // on disk

Finally, we need to free the memory used by the completion with rados_aio_release():

rados_aio_release(comp);

You can use the callbacks to tell your application when writes are
durable, or when read buffers are full. For example, if you wanted to
measure the latency of each operation when appending to several
objects, you could schedule several writes and store the ack and
commit time in the corresponding callback, then wait for all of them
to complete using rados_aio_flush() before analyzing the
latencies:

typedef struct {
 struct timeval start;
 struct timeval ack_end;
 struct timeval commit_end;
} req_duration;

void ack_callback(rados_completion_t comp, void *arg) {
 req_duration *dur = (req_duration *) arg;
 gettimeofday(&dur->ack_end, NULL);
}

void commit_callback(rados_completion_t comp, void *arg) {
 req_duration *dur = (req_duration *) arg;
 gettimeofday(&dur->commit_end, NULL);
}

int output_append_latency(rados_ioctx_t io, const char *data, size_t len, size_t num_writes) {
 req_duration times[num_writes];
 rados_completion_t comps[num_writes];
 for (size_t i = 0; i < num_writes; ++i) {
 gettimeofday(×[i].start, NULL);
 int err = rados_aio_create_completion((void*) ×[i], ack_callback, commit_callback, &comps[i]);
 if (err < 0) {
 fprintf(stderr, "Error creating rados completion: %s\n", strerror(-err));
 return err;
 }
 char obj_name[100];
 snprintf(obj_name, sizeof(obj_name), "foo%ld", (unsigned long)i);
 err = rados_aio_append(io, obj_name, comps[i], data, len);
 if (err < 0) {
 fprintf(stderr, "Error from rados_aio_append: %s", strerror(-err));
 return err;
 }
 }
 // wait until all requests finish *and* the callbacks complete
 rados_aio_flush(io);
 // the latencies can now be analyzed
 printf("Request # | Ack latency (s) | Commit latency (s)\n");
 for (size_t i = 0; i < num_writes; ++i) {
 // don't forget to free the completions
 rados_aio_release(comps[i]);
 struct timeval ack_lat, commit_lat;
 timersub(×[i].ack_end, ×[i].start, &ack_lat);
 timersub(×[i].commit_end, ×[i].start, &commit_lat);
 printf("%9ld | %8ld.%06ld | %10ld.%06ld\n", (unsigned long) i, ack_lat.tv_sec, ack_lat.tv_usec, commit_lat.tv_sec, commit_lat.tv_usec);
 }
 return 0;
}

Note that all the rados_completion_t must be freed with rados_aio_release() to avoid leaking memory.

API calls

Struct rados_pool_stat_t

		
struct rados_pool_stat_t

		Usage information for a pool.

Members

		
uint64_t num_bytes

		space used in bytes

		
uint64_t num_kb

		space used in KB

		
uint64_t num_objects

		number of objects in the pool

		
uint64_t num_object_clones

		number of clones of objects

		
uint64_t num_object_copies

		num_objects * num_replicas

		
uint64_t num_objects_missing_on_primary

		

		
uint64_t num_objects_unfound

		number of objects found on no OSDs

		
uint64_t num_objects_degraded

		number of objects replicated fewer times than they should be (but found on at least one OSD)

		
uint64_t num_rd

		

		
uint64_t num_rd_kb

		

		
uint64_t num_wr

		

		
uint64_t num_wr_kb

		

Struct rados_cluster_stat_t

		
struct rados_cluster_stat_t

		Cluster-wide usage information.

Members

		
uint64_t kb

		

		
uint64_t kb_used

		

		
uint64_t kb_avail

		

		
uint64_t num_objects

		

Defines

		
CEPH_OSD_TMAP_HDR

		

		
CEPH_OSD_TMAP_SET

		

		
CEPH_OSD_TMAP_CREATE

		

		
CEPH_OSD_TMAP_RM

		

		
LIBRADOS_VER_MAJOR

		

		
LIBRADOS_VER_MINOR

		

		
LIBRADOS_VER_EXTRA

		

		
LIBRADOS_VERSION

		

		
LIBRADOS_VERSION_CODE

		

		
LIBRADOS_SUPPORTS_WATCH

		

Types

		
rados_t

		A handle for interacting with a RADOS cluster.

It encapsulates all RADOS client configuration, including username, key for authentication, logging, and debugging. Talking different clusters – or to the same cluster with different users – requires different cluster handles.

		
rados_config_t

		rados_config_t

A handle for the ceph configuration context for the rados_t cluster instance. This can be used to share configuration context/state (e.g., logging configuration) between librados instance.

Warning

The config context does not have independent reference counting. As such, a rados_config_t handle retrieved from a given rados_t is only valid as long as that rados_t.

		
rados_ioctx_t

		An io context encapsulates a few settings for all I/O operations done on it:

		pool - set when the io context is created (see rados_ioctx_create())

		snapshot context for writes (see rados_ioctx_selfmanaged_snap_set_write_ctx())

		snapshot id to read from (see rados_ioctx_snap_set_read())

		object locator for all single-object operations (see rados_ioctx_locator_set_key())

Warning

changing any of these settings is not thread-safe - librados users must synchronize any of these changes on their own, or use separate io contexts for each thread

		
rados_list_ctx_t

		An iterator for listing the objects in a pool.

Used with rados_objects_list_open(),rados_objects_list_next(), andrados_objects_list_close().

		
rados_snap_t

		The id of a snapshot.

		
rados_xattrs_iter_t

		An iterator for listing extended attrbutes on an object.

Used with rados_getxattrs(),rados_getxattrs_next(), andrados_getxattrs_end().

		
rados_completion_t

		Represents the state of an asynchronous operation - it contains the return value once the operation completes, and can be used to block until the operation is complete or safe.

		
rados_callback_t

		Callbacks for asynchrous operations take two parameters:

		cb the completion that has finished

		arg application defined data made available to the callback function

		
rados_watchcb_t

		Callback activated when a notify is received on a watched object.

Parameters are:

		opcode undefined

		ver version of the watched object

		arg application-specific data

Note

BUG: opcode is an internal detail that shouldn’t be exposed

Functions

		
void rados_version(int *major, int *minor, int *extra)

		Get the version of librados.

The version number is major.minor.extra. Note that this is unrelated to the Ceph version number.

TODO: define version semantics, i.e.:

		incrementing major is for backwards-incompatible changes

		incrementing minor is for backwards-compatible changes

		incrementing extra is for bug fixes

		Parameters:		
		major – where to store the major version number

		minor – where to store the minor version number

		extra – where to store the extra version number

		
int rados_create(rados_t *cluster, const char *const id)

		Create a handle for communicating with a RADOS cluster.

Ceph environment variables are read when this is called, so if $CEPH_ARGS specifies everything you need to connect, no further configuration is necessary.

		Parameters:		
		cluster – where to store the handle

		id – the user to connect as (i.e. admin, not client.admin)

		Returns:		0 on success, negative error code on failure

		
int rados_create_with_context(rados_t *cluster, rados_config_t cct)

		Initialize a cluster handle from an existing configuration.

Share configuration state with another rados_t instance.

		Parameters:		
		cluster – where to store the handle

		cct_ – the existing configuration to use

		Returns:		0 on success, negative error code on failure

		
int rados_connect(rados_t cluster)

		Connect to the cluster.

Note

BUG: Before calling this, calling a function that communicates with the cluster will crash.

Precondition

The cluster handle is configured with at least a monitor address. If cephx is enabled, a client name and secret must also be set.

Postcondition

If this succeeds, any function in librados may be used

		Parameters:		
		cluster – The cluster to connect to.

		Returns:		0 on sucess, negative error code on failure

		
void rados_shutdown(rados_t cluster)

		Disconnects from the cluster.

For clean up, this is only necessary after rados_connect()has succeeded.

Warning

This does not guarantee any asynchronous writes have completed. To do that, you must call rados_aio_flush()on all open io contexts.

Postcondition

the cluster handle cannot be used again

		Parameters:		
		cluster – the cluster to shutdown

		
int rados_conf_read_file(rados_t cluster, const char *path)

		Configure the cluster handle using a Ceph config file.

If path is NULL, the default locations are searched, and the first found is used. The locations are:

		$CEPH_CONF (environment variable)

		/etc/ceph/ceph.conf

		~/.ceph/config

		ceph.conf (in the current working directory)

Precondition

rados_connect()has not been called on the cluster handle

		Parameters:		
		cluster – cluster handle to configure

		path – path to a Ceph configuration file

		Returns:		0 on success, negative error code on failure

		
int rados_conf_parse_argv(rados_t cluster, int argc, const char **argv)

		Configure the cluster handle with command line arguments.

argv can contain any common Ceph command line option, including any configuration parameter prefixed by ‘–’ and replacing spaces with dashes or underscores. For example, the following options are equivalent:

		–mon-host 10.0.0.1:6789

		–mon_host 10.0.0.1:6789

		-m 10.0.0.1:6789

Precondition

rados_connect()has not been called on the cluster handle

		Parameters:		
		cluster – cluster handle to configure

		argc – number of arguments in argv

		argv – arguments to parse

		Returns:		0 on success, negative error code on failure

		
int rados_conf_parse_env(rados_t cluster, const char *var)

		Configure the cluster handle based on an environment variable.

The contents of the environment variable are parsed as if they were Ceph command line options. If var is NULL, the CEPH_ARGS environment variable is used.

Precondition

rados_connect()has not been called on the cluster handle

Note

BUG: this is not threadsafe - it uses a static buffer

		Parameters:		
		cluster – cluster handle to configure

		var – name of the environment variable to read

		Returns:		0 on success, negative error code on failure

		
int rados_conf_set(rados_t cluster, const char *option, const char *value)

		Set a configuration option.

Precondition

rados_connect()has not been called on the cluster handle

		Parameters:		
		cluster – cluster handle to configure

		option – option to set

		value – value of the option

		Returns:		

0 on success, negative error code on failure

-ENOENT when the option is not a Ceph configuration option

		
int rados_conf_get(rados_t cluster, const char *option, char *buf, size_t len)

		Get the value of a configuration option.

		Parameters:		
		cluster – configuration to read

		option – which option to read

		buf – where to write the configuration value

		len – the size of buf in bytes

		Returns:		

0 on success, negative error code on failure

-ENAMETOOLONG if the buffer is too short to contain the requested value

		
int rados_cluster_stat(rados_t cluster, struct rados_cluster_stat_t *result)

		Read usage info about the cluster.

This tells you total space, space used, space available, and number of objects. These are not updated immediately when data is written, they are eventually consistent.

		Parameters:		
		cluster – cluster to query

		result – where to store the results

		Returns:		0 on success, negative error code on failure

		
int rados_pool_list(rados_t cluster, char *buf, size_t len)

		List objects in a pool.

Gets a list of pool names as NULL-terminated strings. The pool names will be placed in the supplied buffer one after another. After the last pool name, there will be two 0 bytes in a row.

If len is too short to fit all the pool name entries we need, we will fill as much as we can.

		Parameters:		
		cluster – cluster handle

		buf – output buffer

		len – output buffer length

		Returns:		length of the buffer we would need to list all pools

		
rados_config_t rados_cct(rados_t cluster)

		Get a configuration handle for a rados cluster handle.

This handle is valid only as long as the cluster handle is valid.

		Parameters:		
		cluster – cluster handle

		Returns:		config handle for this cluster

		
uint64_t rados_get_instance_id(rados_t cluster)

		Get a global id for current instance.

This id is a unique representation of current connection to the cluster

		Parameters:		
		cluster – cluster handle

		Returns:		instance global id

		
int rados_ioctx_create(rados_t cluster, const char *pool_name, rados_ioctx_t *ioctx)

		Create an io context.

The io context allows you to perform operations within a particular pool. For more details see rados_ioctx_t.

		Parameters:		
		cluster – which cluster the pool is in

		pool_name – name of the pool

		ioctx – where to store the io context

		Returns:		0 on success, negative error code on failure

		
void rados_ioctx_destroy(rados_ioctx_t io)

		The opposite of rados_ioctx_create.

This just tells librados that you no longer need to use the io context. It may not be freed immediately if there are pending asynchronous requests on it, but you should not use an io context again after calling this function on it.

Warning

This does not guarantee any asynchronous writes have completed. You must call rados_aio_flush()on the io context before destroying it to do that.

		Parameters:		
		io – the io context to dispose of

		
rados_config_t rados_ioctx_cct(rados_ioctx_t io)

		Get configuration hadnle for a pool handle.

		Parameters:		
		io – pool handle

		Returns:		rados_config_t for this cluster

		
int rados_ioctx_pool_stat(rados_ioctx_t io, struct rados_pool_stat_t *stats)

		Get pool usage statistics.

Fills in a rados_pool_stat_tafter querying the cluster.

		Parameters:		
		io – determines which pool to query

		stats – where to store the results

		Returns:		0 on success, negative error code on failure

		
int64_t rados_pool_lookup(rados_t cluster, const char *pool_name)

		Get the id of a pool.

		Parameters:		
		cluster – which cluster the pool is in

		pool_name – which pool to look up

		Returns:		

id of the pool

-ENOENT if the pool is not found

		
int rados_pool_create(rados_t cluster, const char *pool_name)

		Create a pool with default settings.

The default owner is the admin user (auid 0). The default crush rule is rule 0.

		Parameters:		
		cluster – the cluster in which the pool will be created

		pool_name – the name of the new pool

		Returns:		0 on success, negative error code on failure

		
int rados_pool_create_with_auid(rados_t cluster, const char *pool_name, uint64_t auid)

		Create a pool owned by a specific auid.

The auid is the authenticated user id to give ownership of the pool. TODO: document auid and the rest of the auth system

		Parameters:		
		cluster – the cluster in which the pool will be created

		pool_name – the name of the new pool

		auid – the id of the owner of the new pool

		Returns:		0 on success, negative error code on failure

		
int rados_pool_create_with_crush_rule(rados_t cluster, const char *pool_name, __u8 crush_rule_num)

		Create a pool with a specific CRUSH rule.

		Parameters:		
		cluster – the cluster in which the pool will be created

		pool_name – the name of the new pool

		crush_rule_num – which rule to use for placement in the new pool1

		Returns:		0 on success, negative error code on failure

		
int rados_pool_create_with_all(rados_t cluster, const char *pool_name, uint64_t auid, __u8 crush_rule_num)

		Create a pool with a specific CRUSH rule and auid.

This is a combination of rados_pool_create_with_crush_rule()andrados_pool_create_with_auid().

		Parameters:		
		cluster – the cluster in which the pool will be created

		pool_name – the name of the new pool

		crush_rule_num – which rule to use for placement in the new pool2

		auid – the id of the owner of the new pool

		Returns:		0 on success, negative error code on failure

		
int rados_pool_delete(rados_t cluster, const char *pool_name)

		Delete a pool and all data inside it.

The pool is removed from the cluster immediately, but the actual data is deleted in the background.

		Parameters:		
		cluster – the cluster the pool is in

		pool_name – which pool to delete

		Returns:		0 on success, negative error code on failure

		
int rados_ioctx_pool_set_auid(rados_ioctx_t io, uint64_t auid)

		Attempt to change an io context’s associated auid “owner.”.

Requires that you have write permission on both the current and new auid.

		Parameters:		
		io – reference to the pool to change.

		auid – the auid you wish the io to have.

		Returns:		0 on success, negative error code on failure

		
int rados_ioctx_pool_get_auid(rados_ioctx_t io, uint64_t *auid)

		Get the auid of a pool.

		Parameters:		
		io – pool to query

		auid – where to store the auid

		Returns:		0 on success, negative error code on failure

		
int64_t rados_ioctx_get_id(rados_ioctx_t io)

		Get the pool id of the io context.

		Parameters:		
		io – the io context to query

		Returns:		the id of the pool the io context uses

		
int rados_ioctx_get_pool_name(rados_ioctx_t io, char *buf, unsigned maxlen)

		Get the pool name of the io context.

		Parameters:		
		io – the io context to query

		buf – pointer to buffer where name will be stored

		maxlen – size of buffer where name will be stored

		Returns:		length of string stored, or -ERANGE if buffer to small

		
void rados_ioctx_locator_set_key(rados_ioctx_t io, const char *key)

		Set the key for mapping objects to pgs within an io context.

The key is used instead of the object name to determine which placement groups an object is put in. This affects all subsequent operations of the io context - until a different locator key is set, all objects in this io context will be placed in the same pg.

This is useful if you need to do clone_range operations, which must be done with the source and destination objects in the same pg.

		Parameters:		
		io – the io context to change

		key – the key to use as the object locator, or NULL to discard any previously set key

		
int rados_objects_list_open(rados_ioctx_t io, rados_list_ctx_t *ctx)

		Start listing objects in a pool.

		Parameters:		
		io – the pool to list from

		ctx – the handle to store list context in

		Returns:		0 on success, negative error code on failure

		
int rados_objects_list_next(rados_list_ctx_t ctx, const char **entry, const char **key)

		Get the next object name and locator in the pool.

*entry and *key are valid until next call to rados_objects_list_*

		Parameters:		
		ctx – iterator marking where you are in the listing

		entry – where to store the name of the entry

		key – where to store the object locator (set to NULL to ignore)

		Returns:		

0 on success, negative error code on failure

-ENOENT when there are no more objects to list

		
void rados_objects_list_close(rados_list_ctx_t ctx)

		Close the object listing handle.

This should be called when the handle is no longer needed. The handle should not be used after it has been closed.

		Parameters:		
		ctx – the handle to close

		
int rados_ioctx_snap_create(rados_ioctx_t io, const char *snapname)

		Create a pool-wide snapshot.

		Parameters:		
		io – the pool to snapshot

		snapname – the name of the snapshot

		Returns:		0 on success, negative error code on failure

		
int rados_ioctx_snap_remove(rados_ioctx_t io, const char *snapname)

		Delete a pool snapshot.

		Parameters:		
		io – the pool to delete the snapshot from

		snapname – which snapshot to delete

		Returns:		0 on success, negative error code on failure

		
int rados_rollback(rados_ioctx_t io, const char *oid, const char *snapname)

		Rollback an object to a pool snapshot.

The contents of the object will be the same as when the snapshot was taken.

		Parameters:		
		io – the pool in which the object is stored

		oid – the name of the object to rollback

		snapname – which snapshot to rollback to

		Returns:		0 on success, negative error code on failure

		
void rados_ioctx_snap_set_read(rados_ioctx_t io, rados_snap_t snap)

		Set the snapshot from which reads are performed.

Subsequent reads will return data as it was at the time of that snapshot.

		Parameters:		
		io – the io context to change

		snap – the id of the snapshot to set, or CEPH_NOSNAP for no snapshot (i.e. normal operation)

		
int rados_ioctx_selfmanaged_snap_create(rados_ioctx_t io, rados_snap_t *snapid)

		Allocate an ID for a self-managed snapshot.

Get a unique ID to put in the snaphot context to create a snapshot. A clone of an object is not created until a write with the new snapshot context is completed.

		Parameters:		
		io – the pool in which the snapshot will exist

		snapid – where to store the newly allocated snapshot ID

		Returns:		0 on success, negative error code on failure

		
int rados_ioctx_selfmanaged_snap_remove(rados_ioctx_t io, rados_snap_t snapid)

		Remove a self-managed snapshot.

This increases the snapshot sequence number, which will cause snapshots to be removed lazily.

		Parameters:		
		io – the pool in which the snapshot will exist

		snapid – where to store the newly allocated snapshot ID

		Returns:		0 on success, negative error code on failure

		
int rados_ioctx_selfmanaged_snap_rollback(rados_ioctx_t io, const char *oid, rados_snap_t snapid)

		Rollback an object to a self-managed snapshot.

The contents of the object will be the same as when the snapshot was taken.

		Parameters:		
		io – the pool in which the object is stored

		oid – the name of the object to rollback

		snapid – which snapshot to rollback to

		Returns:		0 on success, negative error code on failure

		
int rados_ioctx_selfmanaged_snap_set_write_ctx(rados_ioctx_t io, rados_snap_t seq, rados_snap_t *snaps, int num_snaps)

		Set the snapshot context for use when writing to objects.

This is stored in the io context, and applies to all future writes.

		Parameters:		
		io – the io context to change

		seq – the newest snapshot sequence number for the pool

		snaps – array of snapshots in sorted by descending id

		num_snaps – how many snaphosts are in the snaps array

		Returns:		

0 on success, negative error code on failure

-EINVAL if snaps are not in descending order

		
int rados_ioctx_snap_list(rados_ioctx_t io, rados_snap_t *snaps, int maxlen)

		List all the ids of pool snapshots.

If the output array does not have enough space to fit all the snapshots, -ERANGE is returned and the caller should retry with a larger array.

		Parameters:		
		io – the pool to read from

		snaps – where to store the results

		maxlen – the number of rados_snap_t that fit in the snaps array

		Returns:		

number of snapshots on success, negative error code on failure

-ERANGE is returned if the snaps array is too short

		
int rados_ioctx_snap_lookup(rados_ioctx_t io, const char *name, rados_snap_t *id)

		Get the id of a pool snapshot.

		Parameters:		
		io – the pool to read from

		name – the snapshot to find

		id – where to store the result

		Returns:		0 on success, negative error code on failure

		
int rados_ioctx_snap_get_name(rados_ioctx_t io, rados_snap_t id, char *name, int maxlen)

		Get the name of a pool snapshot.

		Parameters:		
		io – the pool to read from

		id – the snapshot to find

		name – where to store the result

		maxlen – the size of the name array

		Returns:		

0 on success, negative error code on failure

-ERANGE if the name array is too small

		
int rados_ioctx_snap_get_stamp(rados_ioctx_t io, rados_snap_t id, time_t *t)

		Find when a pool snapshot occurred.

		Parameters:		
		io – the pool the snapshot was taken in

		id – the snapshot to lookup

		t – where to store the result

		Returns:		0 on success, negative error code on failure

		
uint64_t rados_get_last_version(rados_ioctx_t io)

		Return the version of the last object read or written to.

This exposes the internal version number of the last object read or written via this io context

		Parameters:		
		io – the io context to check

		Returns:		last read or written object version

		
int rados_write(rados_ioctx_t io, const char *oid, const char *buf, size_t len, uint64_t off)

		Write data to an object.

		Parameters:		
		io – the io context in which the write will occur

		oid – name of the object

		buf – data to write

		len – length of the data, in bytes

		off – byte offset in the object to begin writing at

		Returns:		number of bytes written on success, negative error code on failure

		
int rados_write_full(rados_ioctx_t io, const char *oid, const char *buf, size_t len)

		Write an entire object.

The object is filled with the provided data. If the object exists, it is atomically truncated and then written.

		Parameters:		
		io – the io context in which the write will occur

		oid – name of the object

		buf – data to write

		len – length of the data, in bytes

		Returns:		0 on success, negative error code on failure

		
int rados_clone_range(rados_ioctx_t io, const char *dst, uint64_t dst_off, const char *src, uint64_t src_off, size_t len)

		Efficiently copy a portion of one object to another.

If the underlying filesystem on the OSDsupports it, this will be a copy-on-write clone.

The src and dest objects must be in the same pg. To ensure this, the io context should have a locator key set (see rados_ioctx_locator_set_key()).

		Parameters:		
		io – the context in which the data is cloned

		dst – the name of the destination object

		dst_off – the offset within the destination object (in bytes)

		src – the name of the source object

		src_off – the offset within the source object (in bytes)

		len – how much data to copy

		Returns:		0 on success, negative error code on failure

		
int rados_append(rados_ioctx_t io, const char *oid, const char *buf, size_t len)

		Append data to an object.

		Parameters:		
		io – the context to operate in

		oid – the name of the object

		buf – the data to append

		len – length of buf (in bytes)

		Returns:		number of bytes written on success, negative error code on failure

		
int rados_read(rados_ioctx_t io, const char *oid, char *buf, size_t len, uint64_t off)

		Read data from an object.

The io context determines the snapshot to read from, if any was set by rados_ioctx_snap_set_read().

		Parameters:		
		io – the context in which to perform the read

		oid – the name of the object to read from

		buf – where to store the results

		len – the number of bytes to read

		off – the offset to start reading from in the object

		Returns:		number of bytes read on success, negative error code on failure

		
int rados_remove(rados_ioctx_t io, const char *oid)

		Delete an object.

Note

This does not delete any snapshots of the object.

		Parameters:		
		io – the pool to delete the object from

		oid – the name of the object to delete

		Returns:		0 on success, negative error code on failure

		
int rados_trunc(rados_ioctx_t io, const char *oid, uint64_t size)

		Resize an object.

If this enlarges the object, the new area is logically filled with zeroes. If this shrinks the object, the excess data is removed.

		Parameters:		
		io – the context in which to truncate

		oid – the name of the object

		size – the new size of the object in bytes

		Returns:		0 on success, negative error code on failure

		
int rados_getxattr(rados_ioctx_t io, const char *o, const char *name, char *buf, size_t len)

		Get the value of an extended attribute on an object.

		Parameters:		
		io – the context in which the attribute is read

		o – name of the object

		name – which extended attribute to read

		buf – where to store the result

		len – size of buf in bytes

		Returns:		length of xattr value on success, negative error code on failure

		
int rados_setxattr(rados_ioctx_t io, const char *o, const char *name, const char *buf, size_t len)

		Set an extended attribute on an object.

		Parameters:		
		io – the context in which xattr is set

		o – name of the object

		name – which extended attribute to set

		buf – what to store in the xattr

		len – the number of bytes in buf

		Returns:		0 on success, negative error code on failure

		
int rados_rmxattr(rados_ioctx_t io, const char *o, const char *name)

		Delete an extended attribute from an object.

		Parameters:		
		io – the context in which to delete the xattr

		o – the name of the object

		name – which xattr to delete

		Returns:		0 on success, negative error code on failure

		
int rados_getxattrs(rados_ioctx_t io, const char *oid, rados_xattrs_iter_t *iter)

		Start iterating over xattrs on an object.

Postcondition

iter is a valid iterator

		Parameters:		
		io – the context in which to list xattrs

		oid – name of the object

		iter – where to store the iterator

		Returns:		0 on success, negative error code on failure

		
int rados_getxattrs_next(rados_xattrs_iter_t iter, const char **name, const char **val, size_t *len)

		Get the next xattr on the object.

Precondition

iter is a valid iterator

Postcondition

name is the NULL-terminated name of the next xattr, and val contains the value of the xattr, which is of length len. If the end of the list has been reached, name and val are NULL, and len is 0.

		Parameters:		
		iter – iterator to advance

		name – where to store the name of the next xattr

		val – where to store the value of the next xattr

		len – the number of bytes in val

		Returns:		0 on success, negative error code on failure

		
void rados_getxattrs_end(rados_xattrs_iter_t iter)

		Close the xattr iterator.

iter should not be used after this is called.

		Parameters:		
		iter – the iterator to close

		
int rados_stat(rados_ioctx_t io, const char *o, uint64_t *psize, time_t *pmtime)

		Get object stats (size/mtime)

TODO: when are these set, and by whom? can they be out of date?

		Parameters:		
		io – ioctx

		o – object name

		psize – where to store object size

		pmtime – where to store modification time

		Returns:		0 on success, negative error code on failure

		
int rados_tmap_update(rados_ioctx_t io, const char *o, const char *cmdbuf, size_t cmdbuflen)

		Update tmap (trivial map)

Do compound update to a tmap object, inserting or deleting some number of records. cmdbuf is a series of operation byte codes, following by command payload. Each command is a single-byte command code, whose value is one of CEPH_OSD_TMAP_*.

		update tmap ‘header’
		1 byte = CEPH_OSD_TMAP_HDR

		4 bytes = data length (little endian)

		N bytes = data

		insert/update one key/value pair
		1 byte = CEPH_OSD_TMAP_SET

		4 bytes = key name length (little endian)

		N bytes = key name

		4 bytes = data length (little endian)

		M bytes = data

		insert one key/value pair; return -EEXIST if it already exists.
		1 byte = CEPH_OSD_TMAP_CREATE

		4 bytes = key name length (little endian)

		N bytes = key name

		4 bytes = data length (little endian)

		M bytes = data

		remove one key/value pair
		1 byte = CEPH_OSD_TMAP_RM

		4 bytes = key name length (little endian)

		N bytes = key name

Restrictions:

		The HDR update must preceed any key/value updates.

		All key/value updates must be in lexicographically sorted order in cmdbuf.

		You can read/write to a tmap object via the regular APIs, but you should be careful not to corrupt it. Also be aware that the object format may change without notice.

		Parameters:		
		io – ioctx

		o – object name

		cmdbuf – command buffer

		cmdbuflen – command buffer length in bytes

		Returns:		0 on success, negative error code on failure

		
int rados_tmap_put(rados_ioctx_t io, const char *o, const char *buf, size_t buflen)

		Store complete tmap (trivial map) object.

Put a full tmap object into the store, replacing what was there.

The format of buf is:

		4 bytes - length of header (little endian)

		N bytes - header data

		4 bytes - number of keys (little endian)

and for each key,

		4 bytes - key name length (little endian)

		N bytes - key name

		4 bytes - value length (little endian)

		M bytes - value data

		Parameters:		
		io – ioctx

		o – object name

		buf – buffer

		buflen – buffer length in bytes

		Returns:		0 on success, negative error code on failure

		
int rados_tmap_get(rados_ioctx_t io, const char *o, char *buf, size_t buflen)

		Fetch complete tmap (trivial map) object.

Read a full tmap object. See rados_tmap_put()for the format the data is returned in.

		Parameters:		
		io – ioctx

		o – object name

		buf – buffer

		buflen – buffer length in bytes

		Returns:		

0 on success, negative error code on failure

-ERANGE if buf isn’t big enough

		
int rados_exec(rados_ioctx_t io, const char *oid, const char *cls, const char *method, const char *in_buf, size_t in_len, char *buf, size_t out_len)

		Execute an OSDclass method on an object.

The OSDhas a plugin mechanism for performing complicated operations on an object atomically. These plugins are called classes. This function allows librados users to call the custom methods. The input and output formats are defined by the class. Classes in ceph.git can be found in src/cls_*.cc

		Parameters:		
		io – the context in which to call the method

		oid – the object to call the method on

		cls – the name of the class

		method – the name of the method

		in_buf – where to find input

		in_len – length of in_buf in bytes

		buf – where to store output

		out_len – length of buf in bytes

		Returns:		the length of the output, or -ERANGE if out_buf does not have enough space to store it (For methods that return data). For methods that don’t return data, the return value is method-specific.

		
int rados_aio_create_completion(void *cb_arg, rados_callback_t cb_complete, rados_callback_t cb_safe, rados_completion_t *pc)

		Constructs a completion to use with asynchronous operations.

The complete and safe callbacks correspond to operations being acked and committed, respectively. The callbacks are called in order of receipt, so the safe callback may be triggered before the complete callback, and vice versa. This is affected by journalling on the OSDs.

TODO: more complete documentation of this elsewhere (in the RADOS docs?)

Note

Read operations only get a complete callback.

BUG: this should check for ENOMEM instead of throwing an exception

		Parameters:		
		cb_arg – application-defined data passed to the callback functions

		cb_complete – the function to be called when the operation is in memory on all relpicas

		cb_safe – the function to be called when the operation is on stable storage on all replicas

		pc – where to store the completion

		Returns:		0

		
int rados_aio_wait_for_complete(rados_completion_t c)

		Block until an operation completes.

This means it is in memory on all replicas.

Note

BUG: this should be void

		Parameters:		
		c – operation to wait for

		Returns:		0

		
int rados_aio_wait_for_safe(rados_completion_t c)

		Block until an operation is safe.

This means it is on stable storage on all replicas.

Note

BUG: this should be void

		Parameters:		
		c – operation to wait for

		Returns:		0

		
int rados_aio_is_complete(rados_completion_t c)

		Has an asynchronous operation completed?

Warning

This does not imply that the complete callback has finished

		Parameters:		
		c – async operation to inspect

		Returns:		whether c is complete

		
int rados_aio_is_safe(rados_completion_t c)

		Is an asynchronous operation safe?

Warning

This does not imply that the safe callback has finished

		Parameters:		
		c – async operation to inspect

		Returns:		whether c is safe

		
int rados_aio_wait_for_complete_and_cb(rados_completion_t c)

		Block until an operation completes and callback completes.

This means it is in memory on all replicas and can be read.

Note

BUG: this should be void

		Parameters:		
		c – operation to wait for

		Returns:		0

		
int rados_aio_wait_for_safe_and_cb(rados_completion_t c)

		Block until an operation is safe and callback has completed.

This means it is on stable storage on all replicas.

Note

BUG: this should be void

		Parameters:		
		c – operation to wait for

		Returns:		0

		
int rados_aio_is_complete_and_cb(rados_completion_t c)

		Has an asynchronous operation and callback completed.

		Parameters:		
		c – async operation to inspect

		Returns:		whether c is complete

		
int rados_aio_is_safe_and_cb(rados_completion_t c)

		Is an asynchronous operation safe and has the callback completed.

		Parameters:		
		c – async operation to inspect

		Returns:		whether c is safe

		
int rados_aio_get_return_value(rados_completion_t c)

		Get the return value of an asychronous operation.

The return value is set when the operation is complete or safe, whichever comes first.

Precondition

The operation is safe or complete

Note

BUG: complete callback may never be called when the safe message is received before the complete message

		Parameters:		
		c – async operation to inspect

		Returns:		return value of the operation

		
void rados_aio_release(rados_completion_t c)

		Release a completion.

Call this when you no longer need the completion. It may not be freed immediately if the operation is not acked and committed.

		Parameters:		
		c – completion to release

		
int rados_aio_write(rados_ioctx_t io, const char *oid, rados_completion_t completion, const char *buf, size_t len, uint64_t off)

		Write data to an object asynchronously.

Queues the write and returns. The return value of the completion will be 0 on success, negative error code on failure.

		Parameters:		
		io – the context in which the write will occur

		oid – name of the object

		completion – what to do when the write is safe and complete

		buf – data to write

		len – length of the data, in bytes

		off – byte offset in the object to begin writing at

		Returns:		0 on success, -EROFS if the io context specifies a snap_seq other than CEPH_NOSNAP

		
int rados_aio_append(rados_ioctx_t io, const char *oid, rados_completion_t completion, const char *buf, size_t len)

		Asychronously append data to an object.

Queues the append and returns.

The return value of the completion will be 0 on success, negative error code on failure.

		Parameters:		
		io – the context to operate in

		oid – the name of the object

		completion – what to do when the append is safe and complete

		buf – the data to append

		len – length of buf (in bytes)

		Returns:		0 on success, -EROFS if the io context specifies a snap_seq other than CEPH_NOSNAP

		
int rados_aio_write_full(rados_ioctx_t io, const char *oid, rados_completion_t completion, const char *buf, size_t len)

		Asychronously write an entire object.

The object is filled with the provided data. If the object exists, it is atomically truncated and then written. Queues the write_full and returns.

The return value of the completion will be 0 on success, negative error code on failure.

		Parameters:		
		io – the io context in which the write will occur

		oid – name of the object

		completion – what to do when the write_full is safe and complete

		buf – data to write

		len – length of the data, in bytes

		Returns:		0 on success, -EROFS if the io context specifies a snap_seq other than CEPH_NOSNAP

		
int rados_aio_read(rados_ioctx_t io, const char *oid, rados_completion_t completion, char *buf, size_t len, uint64_t off)

		Asychronously read data from an object.

The io context determines the snapshot to read from, if any was set by rados_ioctx_snap_set_read().

The return value of the completion will be number of bytes read on success, negative error code on failure.

Note

only the ‘complete’ callback of the completion will be called.

		Parameters:		
		io – the context in which to perform the read

		oid – the name of the object to read from

		completion – what to do when the read is complete

		buf – where to store the results

		len – the number of bytes to read

		off – the offset to start reading from in the object

		Returns:		0 on success, negative error code on failure

		
int rados_aio_flush(rados_ioctx_t io)

		Block until all pending writes in an io context are safe.

This is not equivalent to calling rados_aio_wait_for_safe()on all write completions, since this waits for the associated callbacks to complete as well.

Note

BUG: always returns 0, should be void or accept a timeout

		Parameters:		
		io – the context to flush

		Returns:		0 on success, negative error code on failure

		
int rados_watch(rados_ioctx_t io, const char *o, uint64_t ver, uint64_t *handle, rados_watchcb_t watchcb, void *arg)

		Register an interest in an object.

A watch operation registers the client as being interested in notifications on an object. OSDs keep track of watches on persistent storage, so they are preserved across cluster changes by the normal recovery process. If the client loses its connection to the primary OSDfor a watched object, the watch will be removed after 30 seconds. Watches are automatically reestablished when a new connection is made, or a placement group switches OSDs.

Note

BUG: watch timeout should be configurable

BUG: librados should provide a way for watchers to notice connection resets

		Parameters:		
		io – the pool the object is in

		o – the object to watch

		ver – expected version of the object

		handle – where to store the internal id assigned to this watch

		watchcb – what to do when a notify is received on this object

		arg – application defined data to pass when watchcb is called

		Returns:		

0 on success, negative error code on failure

-ERANGE if the version of the object is greater than ver

		
int rados_unwatch(rados_ioctx_t io, const char *o, uint64_t handle)

		Unregister an interest in an object.

Once this completes, no more notifies will be sent to us for this watch. This should be called to clean up unneeded watchers.

		Parameters:		
		io – the pool the object is in

		o – the name of the watched object

		handle – which watch to unregister

		Returns:		0 on success, negative error code on failure

		
int rados_notify(rados_ioctx_t io, const char *o, uint64_t ver, const char *buf, int buf_len)

		Sychronously notify watchers of an object.

This blocks until all watchers of the object have received and reacted to the notify, or a timeout is reached.

Note

BUG: the timeout is not changeable via the C API

BUG: the bufferlist is inaccessible in a rados_watchcb_t

		Parameters:		
		io – the pool the object is in

		o – the name of the object

		ver – obsolete - just pass zero

		buf – data to send to watchers

		buf_len – length of buf in bytes

		Returns:		0 on success, negative error code on failure

 © Copyright 2012, Inktank Storage, Inc..

man/8/cephfs.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

cephfs – ceph file system options utility

Synopsis

cephfs [path command options]

Description

cephfs is a control utility for accessing and manipulating file
layout and location data in the Ceph distributed file system.

Choose one of the following three commands:

		show_layout View the layout information on a file or directory

		set_layout Set the layout information on a file or directory

		show_location View the location information on a file

Options

Your applicable options differ depending on whether you are setting or viewing layout/location.

Viewing options:

		
-l --offset

		Specify an offset for which to retrieve location data

Setting options:

		
-u --stripe_unit

		Set the size of each stripe

		
-c --stripe_count

		Set the number of stripes per object

		
-s --object_size

		Set the size of the objects to stripe across

		
-p --pool

		Set the pool (by numeric value, not name!) to use

		
-o --osd

		Set the preferred OSD to use as the primary

Limitations

When setting layout data, the specified stripe unit and stripe count
must multiply to the size of an object. Any parameters you don’t set
explicitly are left at the system defaults.

Obviously setting the layout of a file and a directory means different
things. Setting the layout of a file specifies exactly how to place
the individual file. This must be done before writing any data to
it. Truncating a file does not allow you to change the layout either.

Setting the layout of a directory sets the “default layout”, which is
used to set the file layouts on any files subsequently created in the
directory (or any subdirectory). Pre-existing files do not have their
layouts changed.

You’ll notice that the layout information allows you to specify a
preferred OSD for placement. This is allowed but is not recommended
since it can dramatically unbalance your storage cluster’s space
utilization.

Availability

cephfs is part of the Ceph distributed file system. Please refer
to the Ceph documentation at http://ceph.com/docs for more
information.

See also

ceph(8)

 © Copyright 2012, Inktank Storage, Inc..

_static/file.png

rbd/rados-rbd-cmds.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Block Devices »

RADOS RBD Commands

The rbd command enables you to create, list, introspect and remove block
device images. You can also use it to clone images, create snapshots,
rollback an image to a snapshot, view a snapshot, etc. For details on using
the rbd command, see RBD – Manage RADOS Block Device (RBD) Images for
details.

Important

To use RBD commands, you must have a running Ceph cluster.

Creating a Block Device Image

Before you can add a block device to a Ceph client, you must create an image for
it in the OSD cluster first. To create a block device image, execute the
following:

rbd create {image-name} --size {megabytes} --dest-pool {pool-name}

For example, to create a 1GB image named foo that stores information in a
pool named swimmingpool, execute the following:

rbd create foo --size 1024
rbd create bar --size 1024 --pool swimmingpool

Note

You must create a pool first before you can specify it as a
source. See Storage Pools for details.

Listing Block Device Images

To list block devices in the rbd pool, execute the following:

rbd ls

To list block devices in a particular pool, execute the following,
but replace {poolname} with the name of the pool:

rbd ls {poolname}

For example:

rbd ls swimmingpool

Retrieving Image Information

To retrieve information from a particular image, execute the following,
but replace {image-name} with the name for the image:

rbd --image {image-name} info

For example:

rbd --image foo info

To retrieve information from an image within a pool, execute the following,
but replace {image-name} with the name of the image and replace {pool-name}
with the name of the pool:

rbd --image {image-name} -p {pool-name} info

For example:

rbd --image bar -p swimmingpool info

Resizing a Block Device Image

RBD images are thin provisioned. They don’t actually use any physical storage
until you begin saving data to them. However, they do have a maximum capacity
that you set with the --size option. If you want to increase (or decrease)
the maximum size of a RADOS block device image, execute the following:

rbd resize --image foo --size 2048

Removing a Block Device Image

To remove a block device, execute the following, but replace {image-name}
with the name of the image you want to remove:

rbd rm {image-name}

For example:

rbd rm foo

To remove a block device from a pool, execute the following, but replace
{image-name} with the name of the image to remove and replace
{pool-name} with the name of the pool:

rbd rm {image-name} -p {pool-name}

For example:

rbd rm bar -p swimmingpool

 © Copyright 2012, Inktank Storage, Inc..

radosgw/s3/bucketops.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		RADOS S3 API »

Bucket Operations

PUT Bucket

Creates a new bucket. To create a bucket, you must have a user ID and a valid AWS Access Key ID to authenticate requests. You may not
create buckets as an anonymous user.

Note

We do not support request entities for PUT /{bucket} in this release.

Constraints

In general, bucket names should follow domain name constraints.

		Bucket names must be unique.

		Bucket names must begin and end with a lowercase letter.

		Bucket names may contain a dash (-).

Syntax

PUT /{bucket} HTTP/1.1
Host: cname.domain.com
x-amz-acl: public-read-write

Authorization: AWS {access-key}:{hash-of-header-and-secret}

Parameters

		Name
		Description
		Valid Values
		Required

		x-amz-acl
		Canned ACLs.
		private, public-read, public-read-write, authenticated-read
		No

HTTP Response

If the bucket name is unique, within constraints and unused, the operation will succeed.
If a bucket with the same name already exists and the user is the bucket owner, the operation will succeed.
If the bucket name is already in use, the operation will fail.

		HTTP Status
		Status Code
		Description

		409
		BucketAlreadyExists
		Bucket already exists under different user’s ownership.

DELETE Bucket

Deletes a bucket. You can reuse bucket names following a successful bucket removal.

Syntax

DELETE /{bucket} HTTP/1.1
Host: cname.domain.com

Authorization: AWS {access-key}:{hash-of-header-and-secret}

HTTP Response

		HTTP Status
		Status Code
		Description

		204
		No Content
		Bucket removed.

GET Bucket

Returns a list of bucket objects.

Syntax

GET /{bucket}?max-keys=25 HTTP/1.1
Host: cname.domain.com

Parameters

		Name
		Type
		Description

		prefix
		String
		Only returns objects that contain the specified prefix.

		delimiter
		String
		The delimiter between the prefix and the rest of the object name.

		marker
		String
		A beginning index for the list of objects returned.

		max-keys
		Integer
		The maximum number of keys to return. Default is 1000.

HTTP Response

		HTTP Status
		Status Code
		Description

		200
		OK
		Buckets retrieved

Bucket Response Entities

GET /{bucket} returns a container for buckets with the following fields.

		Name
		Type
		Description

		ListBucketResult
		Entity
		The container for the list of objects.

		Name
		String
		The name of the bucket whose contents will be returned.

		Prefix
		String
		A prefix for the object keys.

		Marker
		String
		A beginning index for the list of objects returned.

		MaxKeys
		Integer
		The maximum number of keys returned.

		Delimiter
		String
		If set, objects with the same prefix will appear in the CommonPrefixes list.

		IsTruncated
		Boolean
		If true, only a subset of the bucket’s contents were returned.

		CommonPrefixes
		Container
		If multiple objects contain the same prefix, they will appear in this list.

Object Response Entities

The ListBucketResult contains objects, where each object is within a Contents container.

		Name
		Type
		Description

		Contents
		Object
		A container for the object.

		Key
		String
		The object’s key.

		LastModified
		Date
		The object’s last-modified date/time.

		ETag
		String
		An MD-5 hash of the object. (entity tag)

		Size
		Integer
		The object’s size.

		StorageClass
		String
		Should always return STANDARD.

Get Bucket ACL

Retrieves the bucket access control list. The user needs to be the bucket
owner or to have been granted READ_ACP permission on the bucket.

Syntax

Add the acl subresource to the bucket request as shown below.

GET /{bucket}?acl HTTP/1.1
Host: cname.domain.com

Authorization: AWS {access-key}:{hash-of-header-and-secret}

Response Entities

		Name
		Type
		Description

		AccessControlPolicy
		Container
		A container for the response.

		AccessControlList
		Container
		A container for the ACL information.

		Owner
		Container
		A container for the bucket owner’s ID and DisplayName.

		ID
		String
		The bucket owner’s ID.

		DisplayName
		String
		The bucket owner’s display name.

		Grant
		Container
		A container for Grantee and Permission.

		Grantee
		Container
		A container for the DisplayName and ID of the user receiving a grant of permission.

		Permission
		String
		The permission given to the Grantee bucket.

PUT Bucket ACL

Sets an access control to an existing bucket. The user needs to be the bucket
owner or to have been granted WRITE_ACP permission on the bucket.

Syntax

Add the acl subresource to the bucket request as shown below.

PUT /{bucket}?acl HTTP/1.1

Request Entities

		Name
		Type
		Description

		AccessControlPolicy
		Container
		A container for the request.

		AccessControlList
		Container
		A container for the ACL information.

		Owner
		Container
		A container for the bucket owner’s ID and DisplayName.

		ID
		String
		The bucket owner’s ID.

		DisplayName
		String
		The bucket owner’s display name.

		Grant
		Container
		A container for Grantee and Permission.

		Grantee
		Container
		A container for the DisplayName and ID of the user receiving a grant of permission.

		Permission
		String
		The permission given to the Grantee bucket.

List Bucket Multipart Uploads

GET /?uploads returns a list of the current in-progress multipart uploads–i.e., the application initiates a multipart upload, but
the service hasn’t completed all the uploads yet.

Syntax

GET /{bucket}?uploads HTTP/1.1

Parameters

You may specify parameters for GET /{bucket}?uploads, but none of them are required.

		Name
		Type
		Description

		prefix
		String
		Returns in-progress uploads whose keys contains the specified prefix.

		delimiter
		String
		The delimiter between the prefix and the rest of the object name.

		key-marker
		String
		The beginning marker for the list of uploads.

		max-keys
		Integer
		The maximum number of in-progress uploads. The default is 1000.

		max-uploads
		Integer
		The maximum number of multipart uploads. The range from 1-1000. The default is 1000.

		upload-id-marker
		String
		Ignored if key-marker isn’t specified. Specifies the ID of first
upload to list in lexicographical order at or following the ID.

Response Entities

		Name
		Type
		Description

		ListMultipartUploadsResult
		Container
		A container for the results.

		ListMultipartUploadsResult.Prefix
		String
		The prefix specified by the prefix request parameter (if any).

		Bucket
		String
		The bucket that will receive the bucket contents.

		KeyMarker
		String
		The key marker specified by the key-marker request parameter (if any).

		UploadIdMarker
		String
		The marker specified by the upload-id-marker request parameter (if any).

		NextKeyMarker
		String
		The key marker to use in a subsequent request if IsTruncated is true.

		NextUploadIdMarker
		String
		The upload ID marker to use in a subsequent request if IsTruncated is true.

		MaxUploads
		Integer
		The max uploads specified by the max-uploads request parameter.

		Delimiter
		String
		If set, objects with the same prefix will appear in the CommonPrefixes list.

		IsTruncated
		Boolean
		If true, only a subset of the bucket’s upload contents were returned.

		Upload
		Container
		A container for Key, UploadId, InitiatorOwner, StorageClass, and Initiated elements.

		Key
		String
		The key of the object once the multipart upload is complete.

		UploadId
		String
		The ID that identifies the multipart upload.

		Initiator
		Container
		Contains the ID and DisplayName of the user who initiated the upload.

		DisplayName
		String
		The initiator’s display name.

		ID
		String
		The initiator’s ID.

		Owner
		Container
		A container for the ID and DisplayName of the user who owns the uploaded object.

		StorageClass
		String
		The method used to store the resulting object. STANDARD or REDUCED_REDUNDANCY

		Initiated
		Date
		The date and time the user initiated the upload.

		CommonPrefixes
		Container
		If multiple objects contain the same prefix, they will appear in this list.

		CommonPrefixes.Prefix
		String
		The substring of the key after the prefix as defined by the prefix request parameter.

 © Copyright 2012, Inktank Storage, Inc..

man/8/ceph-mds.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

ceph-mds – ceph metadata server daemon

Synopsis

ceph-mds -i name [[–hot-standby [rank]]|[–journal_check rank]]

Description

ceph-mds is the metadata server daemon for the Ceph distributed file
system. One or more instances of ceph-mds collectively manage the file
system namespace, coordinating access to the shared OSD cluster.

Each ceph-mds daemon instance should have a unique name. The name is used
to identify daemon instances in the ceph.conf.

Once the daemon has started, the monitor cluster will normally assign
it a logical rank, or put it in a standby pool to take over for
another daemon that crashes. Some of the specified options can cause
other behaviors.

If you specify hot-standby or journal-check, you must either specify
the rank on the command line, or specify one of the
mds_standby_for_[rank|name] parameters in the config. The command
line specification overrides the config, and specifying the rank
overrides specifying the name.

Options

		
-f, --foreground

		Foreground: do not daemonize after startup (run in foreground). Do
not generate a pid file. Useful when run via ceph-run(8).

		
-d

		Debug mode: like -f, but also send all log output to stderr.

		
-c ceph.conf, --conf=ceph.conf

		Use ceph.conf configuration file instead of the default
/etc/ceph/ceph.conf to determine monitor addresses during
startup.

		
-m monaddress[:port]

		Connect to specified monitor (instead of looking through
ceph.conf).

Availability

ceph-mon is part of the Ceph distributed file system. Please refer to the Ceph documentation at
http://ceph.com/docs for more information.

See also

ceph(8),
ceph-mon(8),
ceph-osd(8)

 © Copyright 2012, Inktank Storage, Inc..

dev/context.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

CephContext

A CephContext represents a single view of the Ceph cluster. It comes complete
with a configuration, a set of performance counters (PerfCounters), and a
heartbeat map. You can find more information about CephContext in
src/common/ceph_context.h.

Generally, you will have only one CephContext in your application, called
g_ceph_context. However, in library code, it is possible that the library user
will initialize multiple CephContexts. For example, this would happen if he
called rados_create more than once.

A ceph context is required to issue log messages. Why is this? Well, without
the CephContext, we would not know which log messages were disabled and which
were enabled. The dout() macro implicitly references g_ceph_context, so it
can’t be used in library code. It is fine to use dout and derr in daemons, but
in library code, you must use ldout and lderr, and pass in your own CephContext
object. The compiler will enforce this restriction.

 © Copyright 2012, Inktank Storage, Inc..

source/contributing.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Ceph Source Code »

Contributing Source Code

If you are making source contributions to the Ceph project,
you must be added to the Ceph project on github.

 © Copyright 2012, Inktank Storage, Inc..

man/8/ceph-mon.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

ceph-mon – ceph monitor daemon

Synopsis

ceph-mon -i monid [–mon-data mondatapath]

Description

ceph-mon is the cluster monitor daemon for the Ceph distributed
file system. One or more instances of ceph-mon form a Paxos
part-time parliament cluster that provides extremely reliable and
durable storage of cluster membership, configuration, and state.

The mondatapath refers to a directory on a local file system storing
monitor data. It is normally specified via the mon data option in
the configuration file.

Options

		
-f, --foreground

		Foreground: do not daemonize after startup (run in foreground). Do
not generate a pid file. Useful when run via ceph-run(8).

		
-d

		Debug mode: like -f, but also send all log output to stderr.

		
-c ceph.conf, --conf=ceph.conf

		Use ceph.conf configuration file instead of the default
/etc/ceph/ceph.conf to determine monitor addresses during
startup.

		
--mkfs

		Initialize the mon data directory with seed information to form
and initial ceph file system or to join an existing monitor
cluster. Three pieces of information must be provided:

		The cluster fsid. This can come from a monmap (--monmap <path>) or
explicitly via --fsid <uuid>.

		A list of monitors and their addresses. This list of monitors
can come from a monmap (--monmap <path>), the mon host
configuration value (in ceph.conf or via -m
host1,host2,...), or mon addr lines in ceph.conf. If this
monitor is to be part of the initial monitor quorum for a new
Ceph cluster, then it must be included in the initial list,
matching either the name or address of a monitor in the list.
When matching by address, either the public addr or public
subnet options may be used.

		The monitor secret key mon.. This must be included in the
keyring provided via --keyring <path>.

		
--keyring

		Specify a keyring for use with --mkfs.

Availability

ceph-mon is part of the Ceph distributed file system. Please refer
to the Ceph documentation at http://ceph.com/docs for more
information.

See also

ceph(8),
ceph-mds(8),
ceph-osd(8)

 © Copyright 2012, Inktank Storage, Inc..

dev/osd_internals/pg_removal.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

 		OSD developer documentation »

PG Removal

See OSD::_remove_pg, OSD::RemoveWQ

There are two ways for a pg to be removed from an OSD:

		MOSDPGRemove from the primary

		OSD::advance_map finds that the pool has been removed

In either case, our general strategy for removing the pg is to atomically remove
the metadata objects (pg->log_oid, pg->biginfo_oid) and rename the pg collections
(temp, HEAD, and snap collections) into removal collections
(see OSD::get_next_removal_coll). Those collections are then asynchronously
removed. We do not do this inline because scanning the collections to remove
the objects is an expensive operation. Atomically moving the directories out
of the way allows us to proceed as if the pg is fully removed except that we
cannot rewrite any of the objects contained in the removal directories until
they have been fully removed. PGs partition the object space, so the only case
we need to worry about is the same pg being recreated before we have finished
removing the objects from the old one.

OSDService::deleting_pgs tracks all pgs in the process of being deleted. Each
DeletingState object in deleting_pgs lives while at least one reference to it
remains. Each item in RemoveWQ carries a reference to the DeletingState for
the relevant pg such that deleting_pgs.lookup(pgid) will return a null ref
only if there are no collections currently being deleted for that pg.
DeletingState allows you to register a callback to be called when the deletion
is finally complete. See PG::start_flush. We use this mechanism to prevent
the pg from being “flushed” until any pending deletes are complete. Metadata
operations are safe since we did remove the old metadata objects and we
inherit the osr from the previous copy of the pg.

Similarly, OSD::osr_registry ensures that the OpSequencers for those pgs can
be reused for a new pg if created before the old one is fully removed, ensuring
that operations on the new pg are sequenced properly with respect to operations
on the old one.

OSD::load_pgs() rebuilds deleting_pgs and osr_registry when scanning the
collections as it finds old removal collections not yet removed.

 © Copyright 2012, Inktank Storage, Inc..

_static/down-pressed.png

config-cluster/authentication.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Configuration »

Authentication

Default users and pools are suitable for initial testing purposes. For test bed
and production environments, you should create users and assign pool access to
the users.

Enabling Authentication

In the [global] settings of your ceph.conf file, you must enable
authentication for your cluster.

[global]
 auth supported = cephx

The valid values are cephx or none. If you specify cephx,
Ceph will look for the keyring in the default search path, which
includes /etc/ceph/keyring. You can override this location by
adding a keyring option in the [global] section of your
ceph.conf file, but this is not recommended.

The client.admin Key

By default, each Ceph command you execute on the command line assumes
that you are the client.admin default user. When running Ceph with
cephx enabled, you need to have a client.admin key to run
ceph commands.

The following command will generate and register a client.admin
key on the monitor with admin capabilities and write it to a keyring
on the local file system. If the key already exists, its current
value will be returned.

sudo ceph auth get-or-create client.admin mds 'allow' osd 'allow *' mon 'allow *' > /etc/ceph/keyring

Generate a Key

Keys enable a specific user to access the monitor, metadata server and
cluster according to capabilities assigned to the key. Capabilities are
simple strings specifying some access permissions for a given server type.
Each server type has its own string. All capabilities are simply listed
in {type} and {capability} pairs on the command line:

sudo ceph auth get-or-create client.{username} {daemon1} {cap1} {daemon2} {cap2} ...

For example, to create a user client.foo with access ‘rw’ for
daemon type ‘osd’ and ‘r’ for daemon type ‘mon’:

sudo ceph auth get-or-create client.foo osd rw mon r > keyring.foo

List Keys in your Cluster

To list the keys registered in your cluster:

sudo ceph auth list

Daemon keyrings

With the exception of the monitors, daemon keyrings are generated in
the same way that user keyrings are. By default, the daemons store
their keyrings inside their data directory. The default keyring
locations, and the capabilities necessary for the daemon to function,
are shown below.

		Daemon
		Default keyring location
		Default caps

		ceph-mon
		$mon_data/keyring
		n/a

		ceph-osd
		$osd_data/keyring
		mon ‘allow rwx’ osd ‘allow *‘

		ceph-mds
		$mds_data/keyring
		mds ‘allow rwx’ mds ‘allow *‘ osd ‘allow *‘

		radosgw
		$rgw_data/keyring
		mon ‘allow r’ osd ‘allow rwx’

Note that the monitor keyring contains a key but no capabilities, and
is not part of the cluster auth database.

The daemon data directory locations default to directories of the form:

/var/lib/ceph/$daemontype/$cluster-$id

For example, osd.12 would be:

/var/lib/ceph/osd/ceph-12

You can override these locations, but it is not recommended.

The monitor key can be created with ceph-authtool command, and
must be identical across all monitors:

sudo ceph-authtool {keyring} --create-keyring --gen-key -n mon.

 © Copyright 2012, Inktank Storage, Inc..

source/clone-source.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Ceph Source Code »

Cloning the Ceph Source Code Repository

To clone the source, you must install Git. See Set Up Git for details.

Clone the Source

To clone the Ceph source code repository, execute:

git clone --recursive https://github.com/ceph/ceph.git

Once git clone executes, you should have a full copy of the Ceph
repository.

Tip

Make sure you maintain the latest copies of the submodules
included in the repository. Running git status will tell you if
the submodules are out of date:

cd ceph
git status

If they are, run:

git submodule update

Choose a Branch

Once you clone the source code and submodules, your Ceph repository
will be on the master branch by default, which is the unstable
development branch. You may choose other branches too.

		master: The unstable development branch.

		stable: The bugfix branch.

		next: The release candidate branch.

git checkout master

 © Copyright 2012, Inktank Storage, Inc..

dev/delayed-delete.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

CephFS delayed deletion

When you delete a file, the data is not immediately removed. Each
object in the file needs to be removed independently, and sending
size_of_file / stripe_size * replication_count messages would slow
the client down too much, and use a too much of the clients
bandwidth. Additionally, snapshots may mean some objects should not be
deleted.

Instead, the file is marked as deleted on the MDS, and deleted lazily.

 © Copyright 2012, Inktank Storage, Inc..

man/1/obsync.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 1, executable programs or shell commands »

obsync – The object synchronizer tool

Synopsis

obsync [options] source-url destination-url

Description

obsync is an object syncrhonizer tool designed to transfer objects
between different object storage systems. Similar to rsync, you
specify a source and a destination, and it will transfer objects
between them until the destination has all the objects in the
source. Obsync will never modify the source – only the destination.

By default, obsync does not delete anything. However, by specifying
--delete-after or --delete-before, you can ask it to delete
objects from the destination that are not in the source.

Target types

Obsync supports S3 via libboto. To use the s3 target, your URL
should look like this: s3://host-name/bucket-name

Obsync supports storing files locally via the file:// target. To
use the file target, your URL should look like this:
file://directory-name

Alternately, give no prefix, like this: ./directory-name

Obsync supports storing files in a RADOS Gateway backend via the
librados Python bindings. To use the rgw` target, your URL
should look like this: ``rgw:ceph-configuration-path:rgw-bucket-name

Options

		
-h, --help

		Display a help message

		
-n, --dry-run

		Show what would be done, but do not modify the destination.

		
-c, --create-dest

		Create the destination if it does not exist.

		
--delete-before

		Before copying any files, delete objects in the destination that
are not in the source.

		
-L, --follow-symlinks

		Follow symlinks when dealing with file:// targets.

		
--no-preserve-acls

		Don’t preserve ACLs when copying objects.

		
-v, --verbose

		Be verbose.

		
-V, --more-verbose

		Be really, really verbose (developer mode)

		
-x SRC=DST, --xuser SRC=DST

		Set up a user translation. You can specify multiple user
translations with multiple --xuser arguments.

		
--force

		Overwrite all destination objects, even if they appear to be the
same as the source objects.

Environment variables

		
SRC_AKEY

		Access key for the source URL

		
SRC_SKEY

		Secret access key for the source URL

		
DST_AKEY

		Access key for the destination URL

		
DST_SKEY

		Secret access key for the destination URL

		
AKEY

		Access key for both source and dest

		
SKEY

		Secret access key for both source and dest

		
DST_CONSISTENCY

		Set to ‘eventual’ if the destination is eventually consistent. If the destination
is eventually consistent, we may have to retry certain operations multiple times.

Examples

AKEY=... SKEY=... obsync -c -d -v ./backup-directory s3://myhost1/mybucket1

Copy objects from backup-directory to mybucket1 on myhost1:

SRC_AKEY=... SRC_SKEY=... DST_AKEY=... DST_SKEY=... obsync -c -d -v s3://myhost1/mybucket1 s3://myhost1/mybucket2

Copy objects from mybucket1 to mybucket2

Availability

obsync is part of the Ceph distributed file system. Please refer
to the Ceph documentation at http://ceph.com/docs for more
information.

 © Copyright 2012, Inktank Storage, Inc..

config-cluster/mkcephfs.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Configuration »

Deploying with mkcephfs

Enable Login to Cluster Hosts as root

To deploy with mkcephfs, you will need to be able to login as root
on each host without a password. For each host, perform the following:

sudo passwd root

Enter a password for the root user.

On the admin host, generate an ssh key without specifying a passphrase
and use the default locations.

ssh-keygen
Generating public/private key pair.
Enter file in which to save the key (/ceph-admin/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /ceph-admin/.ssh/id_rsa.
Your public key has been saved in /ceph-admin/.ssh/id_rsa.pub.

You may use RSA or DSA keys. Once you generate your keys, copy them to each
OSD host. For example:

ssh-copy-id root@myserver01
ssh-copy-id root@myserver02

Modify your ~/.ssh/config file to login as root, as follows:

Host myserver01
 Hostname myserver01.fully-qualified-domain.com
 User root
Host myserver02
 Hostname myserver02.fully-qualified-domain.com
 User root

Copy Configuration File to All Hosts

Ceph’s mkcephfs deployment script does not copy the configuration file you
created from the Administration host to the OSD Cluster hosts. Copy the
configuration file you created (i.e., mycluster.conf in the example below)
from the Administration host to etc/ceph/ceph.conf on each OSD Cluster host
if you are using mkcephfs to deploy Ceph.

cd /etc/ceph
ssh myserver01 sudo tee /etc/ceph/ceph.conf <ceph.conf
ssh myserver02 sudo tee /etc/ceph/ceph.conf <ceph.conf
ssh myserver03 sudo tee /etc/ceph/ceph.conf <ceph.conf

Create the Default Directories

The mkcephfs deployment script does not create the default server directories.
Create server directories for each instance of a Ceph daemon. The host
variables in the ceph.conf file determine which host runs each instance of
a Ceph daemon. Using the exemplary ceph.conf file, you would perform
the following:

On myserver01:

sudo mkdir /var/lib/ceph/osd/ceph-0
sudo mkdir /var/lib/ceph/mon/ceph-a

On myserver02:

sudo mkdir /var/lib/ceph/osd/ceph-1
sudo mkdir /var/lib/ceph/mon/ceph-b

On myserver03:

sudo mkdir /var/lib/ceph/osd/ceph-2
sudo mkdir /var/lib/ceph/mon/ceph-c
sudo mkdir /var/lib/ceph/mds/ceph-a

Run mkcephfs

Once you have copied your Ceph Configuration to the OSD Cluster hosts
and created the default directories, you may deploy Ceph with the
mkcephfs script.

Note

mkcephfs is a quick bootstrapping tool. It does not handle more
complex operations, such as upgrades.

For production environments, deploy Ceph using Chef cookbooks. To run
mkcephfs, execute the following:

cd /etc/ceph
sudo mkcephfs -a -c /etc/ceph/ceph.conf -k ceph.keyring

The script adds an admin key to the ceph.keyring, which is analogous to a
root password. See Authentication when running with cephx enabled.

When you start or stop your cluster, you will not have to use sudo or
provide passwords. For example:

service ceph -a start

See Start | Stop the Cluster for details.

 © Copyright 2012, Inktank Storage, Inc..

man/8/ceph-dencoder.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

ceph-dencoder – ceph encoder/decoder utility

Synopsis

ceph-dencoder [commands...]

Description

ceph-dencoder is a utility to encode, decode, and dump ceph data
structures. It is used for debugging and for testing inter-version
compatibility.

ceph-dencoder takes a simple list of commands and performs them
in order.

Commands

		
version

		Print the version string for the ceph-dencoder binary.

		
import <file>

		Read a binary blob of encoded data from the given file. It will be
placed in an in-memory buffer.

		
export <file>

		Write the contents of the current in-memory buffer to the given
file.

		
list_types

		List the data types known to this build of ceph-dencoder.

		
type <name>

		Select the given type for future encode or decode operations.

		
decode

		Decode the contents of the in-memory buffer into an instance of the
previously selected type. If there is an error, report it.

		
encode

		Encode the contents of the in-memory instance of the previously
selected type to the in-memory buffer.

		
dump_json

		Print a JSON-formatted description of the in-memory object.

		
count_tests

		Print the number of built-in test instances of the previosly
selected type that ceph-dencoder is able to generate.

		
select_test <n>

		Select the given build-in test instance as a the in-memory instance
of the type.

		
get_features

		Print the decimal value of the feature set supported by this version
of ceph-dencoder. Each bit represents a feature. These correspond to
CEPH_FEATURE_* defines in src/include/ceph_features.h.

		
set_features <f>

		Set the feature bits provided to encode to f. This allows
you to encode objects such that they can be understood by old
versions of the software (for those types that support it).

Example

Say you want to examine an attribute on an object stored by ceph-osd. You can do:

$ cd /mnt/osd.12/current/2.b_head
$ attr -l foo_bar_head_EFE6384B
Attribute "ceph.snapset" has a 31 byte value for foo_bar_head_EFE6384B
Attribute "ceph._" has a 195 byte value for foo_bar_head_EFE6384B
$ attr foo_bar_head_EFE6384B -g ceph._ -q > /tmp/a
$ ceph-dencoder type object_info_t import /tmp/a decode dump_json
{ "oid": { "oid": "foo",
 "key": "bar",
 "snapid": -2,
 "hash": 4024842315,
 "max": 0},
 "locator": { "pool": 2,
 "preferred": -1,
 "key": "bar"},
 "category": "",
 "version": "9'1",
 "prior_version": "0'0",
 "last_reqid": "client.4116.0:1",
 "size": 1681,
 "mtime": "2012-02-21 08:58:23.666639",
 "lost": 0,
 "wrlock_by": "unknown.0.0:0",
 "snaps": [],
 "truncate_seq": 0,
 "truncate_size": 0,
 "watchers": {}}

Availability

ceph-dencoder is part of the Ceph distributed file system. Please
refer to the Ceph documentation at http://ceph.com/docs for more
information.

See also

ceph(8)

 © Copyright 2012, Inktank Storage, Inc..

radosgw/swift/auth.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		Swift-compatible API »

Authentication

Swift API requests that require authentication must contain an
X-Storage-Token authentication token in the request header.
The token may be retrieved from RADOS Gateway, or from another authenticator.
To obtain a token from RADOS Gateway, you must create a user. For example:

sudo radosgw-admin user create --uid="{username}" --displayname="{Display Name}"

For details on RADOS Gateway administration, see radosgw-admin.

Auth Get

To authenticate a user, make a request containing an X-Auth-User and a
X-Auth-Key in the header.

Syntax

GET /auth HTTP/1.1
Host: swift.radosgwhost.com
X-Auth-User: johndoe
X-Auth-Key: R7UUOLFDI2ZI9PRCQ53K

Request Headers

X-Auth-User

		Description:		The key RADOS GW username to authenticate.

		Type:		String

		Required:		Yes

X-Auth-Key

		Description:		The key associated to a RADOS GW username.

		Type:		String

		Required:		Yes

Response Headers

The response from the server should include an X-Auth-Token value. The
response may also contain a X-Storage-Url that provides the
{api version}/{account} prefix that is specified in other requests
throughout the API documentation.

X-Storage-Token

		Description:		The authorization token for the X-Auth-User specified in the request.

		Type:		String

X-Storage-Url

		Description:		The URL and {api version}/{account} path for the user.

		Type:		String

A typical response looks like this:

HTTP/1.1 204 No Content
Date: Mon, 16 Jul 2012 11:05:33 GMT
Server: swift
X-Storage-Url: https://swift.radosgwhost.com/v1/ACCT-12345
X-Auth-Token: UOlCCC8TahFKlWuv9DB09TWHF0nDjpPElha0kAa
Content-Length: 0
Content-Type: text/plain; charset=UTF-8

 © Copyright 2012, Inktank Storage, Inc..

ops/manage/failures/osd.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operations »

 		Managing a Ceph cluster »

 		Recovering from failures »

Recovering from ceph-osd failure

Single ceph-osd failure

When a ceph-osd process dies, the monitor will learn about the failure
from surviving ceph-osd daemons and report it via the ceph health
command:

$ ceph health
HEALTH_WARN 1/3 in osds are down

Specifically, you will get a warning whenever there are ceph-osd
processes that are marked in and down. You can identify which
ceph-osds are down with:

$ ceph health detail
HEALTH_WARN 1/3 in osds are down
osd.0 is down since epoch 23, last address 192.168.106.220:6800/11080

Under normal circumstances, simply restarting the ceph-osd daemon will
allow it to rejoin the cluster and recover. If there is a disk
failure or other fault preventing ceph-osd from functioning or
restarting, an error message should be present in its log file in
/var/log/ceph.

If the daemon stopped because of a heartbeat failure, the underlying
kernel file system may unresponsive; check dmesg output for disk
or other kernel errors.

If the problem is a software error (failed assertion or other
unexpected error), it should be reported to the mailing list.

Full cluster

If the cluster fills up, the monitor will prevent new data from being
written. The system puts ceph-osds in two categories: nearfull
and full`, with configurable threshholds for each (80% and 90% by
default). In both cases, full ceph-osds will be reported by ``ceph health:

$ ceph health
HEALTH_WARN 1 nearfull osds
osd.2 is near full at 85%

or:

$ ceph health
HEALTH_ERR 1 nearfull osds, 1 full osds
osd.2 is near full at 85%
osd.3 is full at 97%

The best way to deal with a full cluster is to add new ceph-osds,
allowing the cluster to redistribute data to the newly available
storage.

Homeless placement groups (PGs)

It is possible for all OSDs that had copies of a given PG to fail. If
that’s the case, that subset of the object store is unavailable, and
the monitor will receive no status updates for those PGs. To detect
this situation, the monitor marks any PG whose primary OSD has failed
as stale. For example:

$ ceph health
HEALTH_WARN 24 pgs stale; 3/300 in osds are down

You can identify which PGs are stale, and what the last OSDs to store
them were, with:

$ ceph health detail
HEALTH_WARN 24 pgs stale; 3/300 in osds are down
...
pg 2.5 is stuck stale+active+remapped, last acting [2,0]
...
osd.10 is down since epoch 23, last address 192.168.106.220:6800/11080
osd.11 is down since epoch 13, last address 192.168.106.220:6803/11539
osd.12 is down since epoch 24, last address 192.168.106.220:6806/11861

If we want to get PG 2.5 back online, for example, this tells us that
it was last managed by ceph-osds 0 and 2. Restarting those ceph-osd
daemons will allow the cluster to recover that PG (and, presumably,
many others).

Stuck PGs

It is normal for PGs to enter states like “degraded” or “peering”
following a failure. Normally these states indicate the normal
progression through the failure recovery process. However, if a PG
stays in one of these states for a long time this may be an indication
of a larger problem. For this reason, the monitor will warn when PGs
get “stuck” in a non-optimal state. Specifically, we check for:

		inactive - the PG has not been active for too long (i.e., hasn’t
been able to service read/write requests)

		unclean - the PG has not been clean for too long (i.e.,
hasn’t been able to completely recover from a previous failure

		stale - the PG status has not been updated by a ceph-osd,
indicating that all nodes storing this PG may be down

You can explicitly list stuck PGs with one of:

$ ceph pg dump_stuck stale
$ ceph pg dump_stuck inactive
$ ceph pg dump_stuck unclean

For stuck stale PGs, it is normally a matter of getting the right ceph-osd
daemons running again. For stuck inactive PGs, it is usually a peering problem
(see PG down (peering failure)). For stuck unclean PGs, there is usually something
preventing recovery from completing, like unfound objects (see Unfound objects);

PG down (peering failure)

In certain cases, the ceph-osd “peering” process can run into
problems, preventing a PG from becoming active and usable. For
example, ceph health might report:

$ ceph health detail
HEALTH_ERR 7 pgs degraded; 12 pgs down; 12 pgs peering; 1 pgs recovering; 6 pgs stuck unclean; 114/3300 degraded (3.455%); 1/3 in osds are down
...
pg 0.5 is down+peering
pg 1.4 is down+peering
...
osd.1 is down since epoch 69, last address 192.168.106.220:6801/8651

We can query the cluster to determine exactly why the PG is marked down with:

$ ceph pg 0.5 query
{ "state": "down+peering",
 ...
 "recovery_state": [
 { "name": "Started\/Primary\/Peering\/GetInfo",
 "enter_time": "2012-03-06 14:40:16.169679",
 "requested_info_from": []},
 { "name": "Started\/Primary\/Peering",
 "enter_time": "2012-03-06 14:40:16.169659",
 "probing_osds": [
 0,
 1],
 "blocked": "peering is blocked due to down osds",
 "down_osds_we_would_probe": [
 1],
 "peering_blocked_by": [
 { "osd": 1,
 "current_lost_at": 0,
 "comment": "starting or marking this osd lost may let us proceed"}]},
 { "name": "Started",
 "enter_time": "2012-03-06 14:40:16.169513"}]}

The recovery_state section tells us that peering is blocked due to
down ceph-osd daemons, specifically osd.1. In this case, we can start that ceph-osd
and things will recover.

Alternatively, if there is a catastrophic failure of osd.1 (e.g., disk
failure), we can tell the cluster that it is “lost” and to cope as
best it can. Note that this is dangerous in that the cluster cannot
guarantee that the other copies of the data are consistent and up to
date. To instruct Ceph to continue anyway:

$ ceph osd lost 1

and recovery will proceed.

Unfound objects

Under certain combinations of failures Ceph may complain about
“unfound” objects:

$ ceph health detail
HEALTH_WARN 1 pgs degraded; 78/3778 unfound (2.065%)
pg 2.4 is active+degraded, 78 unfound

This means that the storage cluster knows that some objects (or newer
copies of existing objects) exist, but it hasn’t found copies of them.
One example of how this might come about for a PG whose data is on ceph-osds
A and B:

		A goes down

		B handles some writes, alone

		A comes up

		A and B repeer, and the objects missing on A are queued for recovery.

		Before the new objects are copied, B goes down.

Now A knows that these object exist, but there is no live ceph-osd who
has a copy. In this case, IO to those objects will block, and the
cluster will hope that the failed node comes back soon; this is
assumed to be preferable to returning an IO error to the user.

First, you can identify which objects are unfound with:

$ ceph pg 2.4 list_missing [starting offset, in json]

{ "offset": { "oid": "",
 "key": "",
 "snapid": 0,
 "hash": 0,
 "max": 0},
 "num_missing": 0,
 "num_unfound": 0,
 "objects": [
 { "oid": "object 1",
 "key": "",
 "hash": 0,
 "max": 0 },
 ...
],
 "more": 0}

If there are too many objects to list in a single result, the more
field will be true and you can query for more. (Eventually the
command line tool will hide this from you, but not yet.)

Second, you can identify which OSDs have been probed or might contain
data:

$ ceph pg 2.4 query
...
 "recovery_state": [
 { "name": "Started\/Primary\/Active",
 "enter_time": "2012-03-06 15:15:46.713212",
 "might_have_unfound": [
 { "osd": 1,
 "status": "osd is down"}]},

In this case, for example, the cluster knows that osd.1 might have
data, but it is down. The full range of possible states include:

* already probed
* querying
* osd is down
* not queried (yet)

Sometimes it simply takes some time for the cluster to query possible
locations.

It is possible that there are other locations where the object can
exist that are not listed. For example, if a ceph-osd is stopped and
taken out of the cluster, the cluster fully recovers, and due to some
future set of failures ends up with an unfound object, it won’t
consider the long-departed ceph-osd as a potential location to
consider. (This scenario, however, is unlikely.)

If all possible locations have been queried and objects are still
lost, you may have to give up on the lost objects. This, again, is
possible given unusual combinations of failures that allow the cluster
to learn about writes that were performed before the writes themselves
are recovered. To mark the “unfound” objects as “lost”:

$ ceph pg 2.5 mark_unfound_lost revert

This the final argument specifies how the cluster should deal with
lost objects. Currently the only supported option is “revert”, which
will either roll back to a previous version of the object or (if it
was a new object) forget about it entirely. Use this with caution, as
it may confuse applications that expected the object to exist.

Slow or unresponsive ceph-osd

If, for some reason, a ceph-osd is slow to respond to a request, it will
generate log messages complaining about requests that are taking too
long. The warning threshold defaults to 30 seconds, and is configurable
via the osd op complaint time option. When this happens, the cluster
log will receive messages like:

osd.0 192.168.106.220:6800/18813 312 : [WRN] old request osd_op(client.5099.0:790 fatty_26485_object789 [write 0~4096] 2.5e54f643) v4 received at 2012-03-06 15:42:56.054801 currently waiting for sub ops

Possible causes include:

		bad disk (check dmesg output)

		kernel file system bug (check dmesg output)

		overloaded cluster (check system load, iostat, etc.)

		ceph-osd bug

Flapping OSDs

If something is causing OSDs to “flap” (repeated get marked down and then
up again), you can force the monitors to stop with:

$ ceph osd set noup # prevent osds from getting marked up
$ ceph osd set nodown # prevent osds from getting marked down

These flags are recorded in the osdmap structure:

$ ceph osd dump | grep flags
flags no-up,no-down

You can clear the flags with:

$ ceph osd unset noup
$ ceph osd unset nodown

Two other flags are supported, noin and noout, which prevent
booting OSDs from being marked in (allocated data) or down
ceph-osds from eventually being marked out (regardless of what the
current value for mon osd down out interval is).

Note that noup, noout, and noout are temporary in the
sense that once the flags are cleared, the action they were blocking
should occur shortly after. The noin flag, on the other hand,
prevents ceph-osds from being marked in on boot, and any daemons that
started while the flag was set will remain that way.

 © Copyright 2012, Inktank Storage, Inc..

man/8/osdmaptool.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

osdmaptool – ceph osd cluster map manipulation tool

Synopsis

osdmaptool mapfilename [–print] [–createsimple numosd
[–pgbits bitsperosd]] [–clobber]

Description

osdmaptool is a utility that lets you create, view, and manipulate
OSD cluster maps from the Ceph distributed file system. Notably, it
lets you extract the embedded CRUSH map or import a new CRUSH map.

Options

		
--print

		will simply make the tool print a plaintext dump of the map, after
any modifications are made.

		
--clobber

		will allow osdmaptool to overwrite mapfilename if changes are made.

		
--import-crush mapfile

		will load the CRUSH map from mapfile and embed it in the OSD map.

		
--export-crush mapfile

		will extract the CRUSH map from the OSD map and write it to
mapfile.

		
--createsimple numosd [--pgbits bitsperosd]

		will create a relatively generic OSD map with the numosd devices.
If –pgbits is specified, the initial placement group counts will
be set with bitsperosd bits per OSD. That is, the pg_num map
attribute will be set to numosd shifted by bitsperosd.

Example

To create a simple map with 16 devices:

osdmaptool --createsimple 16 osdmap --clobber

To view the result:

osdmaptool --print osdmap

Availability

osdmaptool is part of the Ceph distributed file system. Please
refer to the Ceph documentation at http://ceph.com/docs for more
information.

See also

ceph(8),
crushtool(8),
mkcephfs(8)

 © Copyright 2012, Inktank Storage, Inc..

ops/radosgw.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operations »

Radosgw installation and administration

RADOS Gateway (radosgw or rgw) provides a RESTful API to the object
store. It interfaces with a web server via FastCGI, and with RADOS via
libradospp.

Configuring Ceph for RADOS Gateway

In order for a host to act as a RADOS gateway, you must add a
[client.radosgw.<name>] section to your Ceph configuration file
(typically /etc/ceph/ceph.conf):

[client.radosgw.gateway]
 host = gateway
 rgw socket path = /tmp/radosgw.sock

host is the name of the host running radosgw. keyring points
to the keyring file for Cephx authentication. rgw socket path is
the location of the UNIX socket which radosgw binds to.

If your Ceph cluster has Cephx authentication enabled (highly
recommended) you also need to add the following option to tell radosgw
where it finds its authentication key:

[client.radosgw.gateway]
 keyring = /etc/ceph/keyring.radosgw.gateway

Creating authentication credentials

To allow radosgw to sucessfully authenticate with the Ceph cluster,
use the ceph-authtool command to create a key and set its
capabilities:

ceph-authtool -C -n client.radosgw.gateway \
 --gen-key /etc/ceph/keyring.radosgw.gateway
ceph-authtool -n client.radosgw.gateway \
 --cap mon 'allow r' --cap osd 'allow rwx' --cap mds 'allow' \
 /etc/ceph/keyring.radosgw.gateway

Finally, add this key to the authentication entries:

ceph auth add client.radosgw.gateway \
 --in-file=/etc/ceph/keyring.radosgw.gateway

Configuring the web server for radosgw

The radosgw FastCGI wrapper

A wrapper script, customarily named radosgw.cgi needs to go into
your preferred location – typically your web server root directory.

#!/bin/sh
exec /usr/bin/radosgw -c /etc/ceph/ceph.conf -n client.radosgw.gateway

The -c option may be omitted if your Ceph configuration file
resides in its default location ((/etc/ceph/ceph.conf)). The
-n option identifies the client section in the configuration
file that radosgw should parse – if omitted, this would default to
client.admin.

Configuring Apache for radosgw

The recommended way of deploying radosgw is with Apache and
mod_fastcgi. Ensure that both mod_fastcgi and mod_rewrite
are enabled in your Apache configuration. Set the
FastCGIExternalServer option to point to the radosgw FastCGI
wrapper.

<IfModule mod_fastcgi.c>
 FastCgiExternalServer /var/www/radosgw.fcgi -socket /tmp/radosgw.sock
</IfModule>

Then, create a virtual host configuration as follows:

<VirtualHost *:80>
 ServerName radosgw.example.com
 ServerAlias rgw.example.com
 ServerAdmin webmaster@example.com
 DocumentRoot /var/www

 <IfModule mod_rewrite.c>
 RewriteEngine On
 RewriteRule ^/(.*) /radosgw.fcgi?%{QUERY_STRING} [E=HTTP_AUTHORIZATION:%{HTTP:Authorization},L]
 </IfModule>

 <IfModule mod_fastcgi.c>
 <Directory /var/www>
 Options +ExecCGI
 AllowOverride All
 SetHandler fastcgi-script
 Order allow,deny
 Allow from all
 AuthBasicAuthoritative Off
 </Directory>
 </IfModule>

 AllowEncodedSlashes On
 ServerSignature Off
</VirtualHost>

Starting the daemons

For the gateway to become operational, start both the radosgw daemon
and your web server:

service radosgw start
service apache start

Creating users

In order to be able to use the RESTful API, create a user with the
radosgw-admin utility:

$ radosgw-admin user create --uid=johndoe --display-name="John Doe" --email=john@example.com
{ "user_id": "johndoe",
 "rados_uid": 0,
 "display_name": "John Doe",
 "email": "john@example.com",
 "suspended": 0,
 "subusers": [],
 "keys": [
 { "user": "johndoe",
 "access_key": "QFAMEDSJP5DEKJO0DDXY",
 "secret_key": "iaSFLDVvDdQt6lkNzHyW4fPLZugBAI1g17LO0+87"}],
 "swift_keys": []}

Note that creating a user also creates an access_key and
secret_key entry for use with any S3 API-compatible client.

Enabling Swift access

Allowing access to the object store with Swift (OpenStack Object
Storage) compatible clients requires an additional step, the creation
of a subuser and a Swift access key.

radosgw-admin subuser create --uid=johndoe --subuser=johndoe:swift --access=full
{ "user_id": "johndoe",
 "rados_uid": 0,
 "display_name": "John Doe",
 "email": "john@example.com",
 "suspended": 0,
 "subusers": [
 { "id": "johndoe:swift",
 "permissions": "full-control"}],
 "keys": [
 { "user": "johndoe",
 "access_key": "QFAMEDSJP5DEKJO0DDXY",
 "secret_key": "iaSFLDVvDdQt6lkNzHyW4fPLZugBAI1g17LO0+87"}],
 "swift_keys": []}

radosgw-admin key create --subuser=johndoe:swift --key-type=swift
{ "user_id": "johndoe",
 "rados_uid": 0,
 "display_name": "John Doe",
 "email": "john@example.com",
 "suspended": 0,
 "subusers": [
 { "id": "johndoe:swift",
 "permissions": "full-control"}],
 "keys": [
 { "user": "johndoe",
 "access_key": "QFAMEDSJP5DEKJO0DDXY",
 "secret_key": "iaSFLDVvDdQt6lkNzHyW4fPLZugBAI1g17LO0+87"}],
 "swift_keys": [
 { "user": "johndoe:swift",
 "secret_key": "E9T2rUZNu2gxUjcwUBO8n\/Ev4KX6\/GprEuH4qhu1"}]}

With this configuration, you are able to use any Swift client to
connect to and use radosgw. As an example, you might use the swift
command-line client utility that ships with the OpenStack Object
Storage packages.

$ swift -V 1.0 -A http://radosgw.example.com/auth \
 -U johndoe:swift -K E9T2rUZNu2gxUjcwUBO8n\/Ev4KX6\/GprEuH4qhu1 \
 post test
$ swift -V 1.0 -A http://radosgw.example.com/auth \
 -U johndoe:swift -K E9T2rUZNu2gxUjcwUBO8n\/Ev4KX6\/GprEuH4qhu1 \
 upload test myfile

Note that the radosgw user:subuser tuple maps to the
tenant:user tuple expected by Swift.

Note also that the radosgw Swift authentication service only supports
built-in Swift authentication (-V 1.0) at this point. There is
currently no way to make radosgw authenticate users via OpenStack
Identity Service (Keystone).

 © Copyright 2012, Inktank Storage, Inc..

man/8/ceph-rbdnamer.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

ceph-rbdnamer – udev helper to name RBD devices

Synopsis

ceph-rbdnamer num

Description

ceph-rbdnamer prints the pool and image name for the given RBD devices
to stdout. It is used by udev (using a rule like the one below) to
set up a device symlink.

KERNEL=="rbd[0-9]*", PROGRAM="/usr/bin/ceph-rbdnamer %n", SYMLINK+="rbd/%c{1}/%c{2}"

Availability

ceph-rbdnamer is part of the Ceph distributed file system. Please
refer to the Ceph documentation at http://ceph.com/docs for more
information.

See also

rbd(8),
ceph(8)

 © Copyright 2012, Inktank Storage, Inc..

install/hardware-recommendations.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Installation »

Hardware Recommendations

Ceph runs on commodity hardware and a Linux operating system over a TCP/IP
network. The hardware recommendations for different processes/daemons differ
considerably.

		OSDs: OSD hosts should have ample data storage in the form of a hard drive
or a RAID. Ceph OSDs run the RADOS service, calculate data placement with
CRUSH, and maintain their own copy of the cluster map. Therefore, OSDs
should have a reasonable amount of processing power.

		Monitors: Ceph monitor hosts require enough disk space for the cluster map,
but usually do not encounter heavy loads. Monitor hosts do not need to be
very powerful.

		Metadata Servers: Ceph metadata servers distribute their load. However,
metadata servers must be capable of serving their data quickly. Metadata
servers should have strong processing capability and plenty of RAM.

Note

If you are not using the Ceph File System, you do not need a meta data server.

Minimum Hardware Recommendations

Ceph can run on inexpensive commodity hardware. Small production clusters
and development clusters can run successfully with modest hardware.

		Process
		Criteria
		Minimum Recommended

		ceph-osd
		Processor
		64-bit AMD-64/i386 dual-core

		RAM
		500 MB per daemon

		Volume Storage
		1-disk or RAID per daemon

		Network
		2-1GB Ethernet NICs

		ceph-mon
		Processor
		64-bit AMD-64/i386

		RAM
		1 GB per daemon

		Disk Space
		10 GB per daemon

		Network
		2-1GB Ethernet NICs

		ceph-mds
		Processor
		64-bit AMD-64/i386 quad-core

		RAM
		1 GB minimum per daemon

		Disk Space
		1 MB per daemon

		Network
		2-1GB Ethernet NICs

Production Cluster Example

Production clusters for petabyte scale data storage may also use commodity
hardware, but should have considerably more memory, processing power and data
storage to account for heavy traffic loads.

A recent (2012) Ceph cluster project is using two fairly robust hardware
configurations for Ceph OSDs, and a lighter configuration for monitors.

		Configuration
		Criteria
		Minimum Recommended

		Dell PE R510
		Processor
		2 64-bit quad-core Xeon CPUs

		RAM
		16 GB

		Volume Storage
		8-2TB drives. 1-OS 7-Storage

		Client Network
		2-1GB Ethernet NICs

		OSD Network
		2-1GB Ethernet NICs

		NIC Mgmt.
		2-1GB Ethernet NICs

		Dell PE R515
		Processor
		1 hex-core Opteron CPU

		RAM
		16 GB

		Volume Storage
		12-3TB drives. Storage

		OS Storage
		1-500GB drive. Operating System.

		Client Network
		2-1GB Ethernet NICs

		OSD Network
		2-1GB Ethernet NICs

		NIC Mgmt.
		2-1GB Ethernet NICs

 © Copyright 2012, Inktank Storage, Inc..

rbd/rbd.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

Block Devices

A block is a sequence of bytes (for example, a 512-byte block of data).
Block-based storage interfaces are the most common way to store data with
rotating media such as hard disks, CDs, floppy disks, and even traditional
9-track tape. The ubiquity of block device interfaces makes a virtual block
device an ideal candidate to interact with a mass data storage system like Ceph.

Ceph’s RADOS Block Devices (RBD) interact with RADOS OSDs using the
librados and librbd libraries. RBDs are thin-provisioned, resizable
and store data striped over multiple OSDs in a Ceph cluster. RBDs inherit
librados capabilities such as snapshotting and cloning. Ceph’s RBDs deliver
high performance with infinite scalability to kernel objects, kernel virtual
machines and cloud-based computing systems like OpenStack and CloudStack.

The librbd library converts data blocks into objects for storage in
RADOS OSD clusters–the same storage system for librados object stores and
the Ceph FS filesystem. You can use the same cluster to operate object stores,
the Ceph FS filesystem, and RADOS block devices simultaneously.

Important

To use RBD, you must have a running Ceph cluster.

		RADOS Commands

		Kernel Objects

		RBD Snapshots

		QEMU and RBD

		libvirt

		RBD and OpenStack

 © Copyright 2012, Inktank Storage, Inc..

dev/mon-bootstrap.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

Monitor bootstrap

Terminology:

		cluster: a set of monitors

		quorum: an active set of monitors consisting of a majority of the cluster

In order to initialize a new monitor, it must always be fed:

		a logical name

		secret keys

		a cluster fsid (uuid)

In addition, a monitor needs to know two things:

		what address to bind to

		who its peers are (if any)

There are a range of ways to do both.

Logical id

The logical id should be unique across the cluster. It will be
appended to mon. to logically describe the monitor in the Ceph
cluster. For example, if the logical id is foo, the monitor’s
name will be mon.foo.

For most users, there is no more than one monitor per host, which
makes the short hostname logical choice.

Secret keys

The mon. secret key is stored a keyring file in the mon data directory. It can be generated
with a command like:

ceph-authtool --create /path/to/keyring --gen-key -n mon.

When creating a new monitor cluster, the keyring should also contain a client.admin key that can be used
to administer the system:

ceph-authtool /path/to/keyring --gen-key -n client.admin

The resulting keyring is fed to ceph-mon --mkfs with the --keyring <keyring> command-line argument.

Cluster fsid

The cluster fsid is a normal uuid, like that generated by the uuidgen command. It
can be provided to the monitor in two ways:

		via the --fsid <uuid> command-line argument (or config file option)

		via a monmap provided to the new monitor via the --monmap <path> command-line argument.

Monitor address

The monitor address can be provided in several ways.

		via the --public-addr <ip[:port]> command-line option (or config file option)

		via the --public-network <cidr> command-line option (or config file option)

		via the monmap provided via --monmap <path>, if it includes a monitor with our name

		via the bootstrap monmap (provided via --monmap <path> or generated from --mon-host <list>) if it includes a monitor with no name (noname-<something>) and an address configured on the local host.

Peers

The monitor peers are provided in several ways:

		via the initial monmap, provided via --monmap <filename>

		via the bootstrap monmap generated from --mon-host <list>

		via the bootstrap monmap generated from [mon.*] sections with mon addr in the config file

		dynamically via the admin socket

However, these methods are not completely interchangeable because of
the complexity of creating a new monitor cluster without danger of
races.

Cluster creation

There are three basic approaches to creating a cluster:

		Create a new cluster by specifying the monitor names and addresses ahead of time.

		Create a new cluster by specifying the monitor names ahead of time, and dynamically setting the addresses as ceph-mon daemons configure themselves.

		Create a new cluster by specifying the monitor addresses ahead of time.

Names and addresses

Generate a monmap using monmaptool with the names and addresses of the initial
monitors. The generated monmap will also include a cluster fsid. Feed that monmap
to each monitor daemon:

ceph-mon --mkfs -i <name> --monmap <initial_monmap> --keyring <initial_keyring>

When the daemons start, they will know exactly who they and their peers are.

Addresses only

The initial monitor addresses can be specified with the mon host configuration value,
either via a config file or the command-line argument. This method has the advantage that
a single global config file for the cluster can have a line like:

mon host = a.foo.com, b.foo.com, c.foo.com

and will also serve to inform any ceph clients or daemons who the monitors are.

The ceph-mon daemons will need to be fed the initial keyring and cluster fsid to
initialize themselves:

ceph-mon –mkfs -i <name> –fsid <uuid> –keyring <initial_keyring>

When the daemons first start up, they will share their names with each other and form a
new cluster.

Names only

In dynamic “cloud” environments, the cluster creator may not (yet)
know what the addresses of the monitors are going to be. Instead,
they may want machines to configure and start themselves in parallel
and, as they come up, form a new cluster on their own. The problem is
that the monitor cluster relies on strict majorities to keep itself
consistent, and in order to “create” a new cluster, it needs to know
what the initial set of monitors will be.

This can be done with the mon initial members config option, which
should list the ids of the initial monitors that are allowed to create
the cluster:

mon initial members = foo, bar, baz

The monitors can then be initialized by providing the other pieces of
information (they keyring, cluster fsid, and a way of determining
their own address). For example:

ceph-mon --mkfs -i <name> --mon-initial-hosts 'foo,bar,baz' --keyring <initial_keyring> --public-addr <ip>

When these daemons are started, they will know their own address, but
not their peers. They can learn those addresses via the admin socket:

ceph --admin-daemon /var/run/ceph/mon.<id>.asok add_bootstrap_peer_hint <peer ip>

Once they learn enough of their peers from the initial member set,
they will be able to create the cluster.

Cluster expansion

Cluster expansion is slightly less demanding than creation, because
the creation of the initial quorum is not an issue and there is no
worry about creating separately independent clusters.

New nodes can be forced to join an existing cluster in two ways:

		by providing no initial monitor peers addresses, and feeding them dynamically.

		by specifying the mon initial members config option to prevent the new nodes from forming a new, independent cluster, and feeding some existing monitors via any available method.

Initially peerless expansion

Create a new monitor and give it no peer addresses other than it’s own. For
example:

ceph-mon --mkfs -i <myid> --fsid <fsid> --keyring <mon secret key> --public-addr <ip>

Once the daemon starts, you can give it one or more peer addresses to join with:

ceph --admin-daemon /var/run/ceph/mon.<id>.asok add_bootstrap_peer_hint <peer ip>

This monitor will never participate in cluster creation; it can only join an existing
cluster.

Expanding with initial members

You can feed the new monitor some peer addresses initially and avoid badness by also
setting mon initial members. For example:

ceph-mon --mkfs -i <myid> --fsid <fsid> --keyring <mon secret key> --public-addr <ip> --mon-host foo,bar,baz

When the daemon is started, mon initial members must be set via the command line or config file:

ceph-mon -i <myid> --mon-initial-members foo,bar,baz

to prevent any risk of split-brain.

 © Copyright 2012, Inktank Storage, Inc..

man/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

Manual pages

		Section 1, executable programs or shell commands
		obsync – The object synchronizer tool

		Section 8, system administration commands
		ceph – ceph file system control utility

		ceph-authtool – ceph keyring manipulation tool

		ceph-clsinfo – show class object information

		ceph-conf – ceph conf file tool

		ceph-debugpack – ceph debug packer utility

		ceph-dencoder – ceph encoder/decoder utility

		ceph-fuse – FUSE-based client for ceph

		ceph-mds – ceph metadata server daemon

		ceph-mon – ceph monitor daemon

		ceph-osd – ceph object storage daemon

		ceph-rbdnamer – udev helper to name RBD devices

		ceph-run – restart daemon on core dump

		ceph-syn – ceph synthetic workload generator

		cephfs – ceph file system options utility

		crushtool – CRUSH map manipulation tool

		librados-config – display information about librados

		mkcephfs – create a ceph file system

		monmaptool – ceph monitor cluster map manipulation tool

		mount.ceph – mount a ceph file system

		osdmaptool – ceph osd cluster map manipulation tool

		rados – rados object storage utility

		radosgw – rados REST gateway

		radosgw-admin – rados REST gateway user administration utility

		rbd – manage rados block device (RBD) images

 © Copyright 2012, Inktank Storage, Inc..

dev/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

Internal developer documentation

Note

If you’re looking for how to use Ceph as a library from your
own software, please see API Documentation.

You can start a development mode Ceph cluster, after compiling the source, with:

cd src
install -d -m0755 out dev/osd0
./vstart.sh -n -x -l
check that it's there
./ceph health

Todo

vstart is woefully undocumented and full of sharp sticks to poke yourself with.

Mailing list

The official development email list is ceph-devel@vger.kernel.org. Subscribe by sending
a message to majordomo@vger.kernel.org with the line:

subscribe ceph-devel

in the body of the message.

Contents

		Configuration Management System
		The Configuration File

		Metavariables

		Readin configuration values

		Changing configuration values

		CephContext

		CephFS delayed deletion

		Documenting Ceph
		Code Documentation

		Drawing diagrams
		Graphviz

		Ditaa

		Blockdiag

		Inkscape

		File striping
		ceph_file_layout

		Filestore filesystem compatilibity
		ext4 limits total xattrs for 4KB

		OSD journal replay of non-idempotent transactions

		Building Ceph Documentation
		Clone the Ceph Repository

		Install the Required Tools

		Build the Documents

		Kernel client troubleshooting (FS)

		Library architecture

		Debug logs
		Performance counters

		Monitor bootstrap
		Logical id

		Secret keys

		Cluster fsid

		Monitor address

		Peers

		Cluster creation
		Names and addresses

		Addresses only

		Names only

		Cluster expansion
		Initially peerless expansion

		Expanding with initial members

		Object Store Architecture Overview

		OSD class path issues

		Peering
		Concepts

		Description of the Peering Process

		State Model

		Perf counters
		Access

		Collections

		Schema

		Dump

		PG (Placement Group) notes
		Overview

		Mapping algorithm (simplified)

		User-visible PG States

		RBD Layering
		Command line interface

		Implementation
		Data Flow

		Parent/Child relationships

		Protection

		Resizing

		Renaming

		Header changes
		cls_rbd

		librbd

		OSD developer documentation
		Map and PG Message handling
		Overview

		MOSDMap

		MOSDPGOp/MOSDPGSubOp

		Peering Messages

		OSD
		Concepts

		Overview

		PG
		Concepts

		Peering Details and Gotchas

		PG Removal

 © Copyright 2012, Inktank Storage, Inc..

config-cluster/chef.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Configuration »

Deploying with Chef

We use Chef cookbooks to deploy Ceph. See Managing Cookbooks with Knife [http://wiki.opscode.com/display/chef/Managing+Cookbooks+With+Knife] for details
on using knife. For Chef installation instructions, see Installing Chef.

Clone the Required Cookbooks

To get the cookbooks for Ceph, clone them from git.:

cd ~/chef-cookbooks
git clone https://github.com/opscode-cookbooks/apache2.git
git clone https://github.com/ceph/ceph-cookbooks.git ceph

Add the Required Cookbook Paths

If you added a default cookbook path when you installed Chef, knife
may be able to upload the cookbook you’ve cloned to your cookbook path
directory without further configuration. If you used a different path,
or if the cookbook repository you cloned has a different tree structure,
add the required cookbook path to your knife.rb file. The
cookbook_path setting takes a string or an array of strings.
For example, you can replace a string path with an array of string paths:

cookbook_path '/home/{user-name}/chef-cookbooks/'

Becomes:

cookbook_path [
 '/home/{user-name}/chef-cookbooks/',
 '/home/{user-name}/chef-cookbooks/{another-directory}/',
 '/some/other/path/to/cookbooks/'
]

Install the Cookbooks

To install Ceph, you must upload the Ceph cookbooks and the Apache cookbooks
(for use with RADOSGW) to your Chef server.

knife cookbook upload apache2 ceph

Configure your Ceph Environment

The Chef server can support installation of software for multiple environments.
The environment you create for Ceph requires an fsid, the secret for
your monitor(s) if you are running Ceph with cephx authentication, and
the host name (i.e., short name) for your monitor hosts.

For the filesystem ID, use uuidgen from the uuid-runtime package to
generate a unique identifier.

uuidgen -r

For the monitor(s) secret(s), use ceph-authtool to generate the secret(s):

sudo apt-get update
sudo apt-get install ceph-common
ceph-authtool /dev/stdout --name=mon. --gen-key

The secret is the value to the right of "key =", and should look something
like this:

AQBAMuJPINJgFhAAziXIrLvTvAz4PRo5IK/Log==

To create an environment for Ceph, set a command line editor. For example:

export EDITOR=vim

Then, use knife to create an environment.

knife environment create {env-name}

For example:

knife environment create Ceph

A JSON file will appear. Perform the following steps:

		Enter a description for the environment.

		In "default_attributes": {}, add "ceph" : {}.

		Within "ceph" : {}, add "monitor-secret":.

		Immediately following "monitor-secret": add the key you generated within quotes, followed by a comma.

		Within "ceph":{} and following the monitor-secret key-value pair, add "config": {}

		Within "config": {} add "fsid":.

		Immediately following "fsid":, add the unique identifier you generated within quotes, followed by a comma.

		Within "config": {} and following the fsid key-value pair, add "mon_initial_members":

		Immediately following "mon_initial_members":, enter the initial monitor host names.

For example:

"default_attributes" : {
 "ceph": {
 "monitor-secret": "{replace-with-generated-secret}",
 "config": {
 "fsid": "{replace-with-generated-uuid}",
 "mon_initial_members": "{replace-with-monitor-hostname(s)}"
 }
 }
}

Advanced users (i.e., developers and QA) may also add "ceph_branch": "{branch}"
to default-attributes, replacing {branch} with the name of the branch you
wish to use (e.g., master).

Configure the Roles

Navigate to the Ceph cookbooks directory.

cd ~/chef-cookbooks/ceph

Create roles for OSDs, monitors, metadata servers, and RADOS Gateways from
their respective role files.

knife role from file roles/ceph-osd.rb
knife role from file roles/ceph-mon.rb
knife role from file roles/ceph-mds.rb
knife role from file roles/ceph-radosgw.rb

Configure Nodes

You must configure each node you intend to include in your Ceph cluster.
Identify nodes for your Ceph cluster.

knife node list

For each node you intend to use in your Ceph cluster, configure the node
as follows:

knife node edit {node-name}

The node configuration should appear in your text editor. Change the
chef_environment value to Ceph (or whatever name you set for your
Ceph environment).

In the run_list, add "recipe[ceph::apt]", to all nodes as
the first setting, so that Chef can install or update the necessary packages.
Then, add at least one of:

"role[ceph-mon]"
"role[ceph-osd]"
"role[ceph-mds]"
"role[ceph-radosgw]"

If you add more than one role, separate them with a comma. Replace the
{hostname} setting of the name key to the host name for the node.

{
 "chef_environment": "Ceph",
 "name": "{hostname}",
 "normal": {
 "tags": [

]
 },
 "run_list": [
 "recipe[ceph::apt]",
 "role[ceph-mon]",
 "role[ceph-mds]"
]
}

Prepare OSD Disks

For the Ceph 0.48 Argonaut release, install gdisk and configure the OSD
hard disks for use with Ceph. Replace {fsid} with the UUID you generated
while using uuidgen -r.

sudo apt-get install gdisk
sudo sgdisk /dev/{disk} --zap-all --clear --mbrtogpt --largest-new=1 --change-name=1:'ceph data' --typecode=1:{fsid}

Create a file system and allocate the disk to your cluster. Specify a
filesystem (e.g., ext4, xfs, btrfs). When you execute
ceph-disk-prepare, remember to replace {fsid} with the UUID you
generated while using uuidgen -r:

sudo mkfs -t ext4 /dev/{disk}
sudo mount -o user_xattr /dev/{disk} /mnt
sudo ceph-disk-prepare --cluster-uuid={fsid} /mnt
sudo umount /mnt

Finally, simulate a hotplug event.

sudo udevadm trigger --subsystem-match=block --action=add

Run chef-client on each Node

Once you have completed the preceding steps, you must run chef-client
on each node. For example:

sudo chef-client

Proceed to Operating the Cluster

Once you complete the deployment, you may begin operating your cluster.
See Operating a Cluster for details.

 © Copyright 2012, Inktank Storage, Inc..

man/8/radosgw.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

radosgw – rados REST gateway

Synopsis

radosgw

Description

radosgw is an HTTP REST gateway for the RADOS object store, a part
of the Ceph distributed storage system. It is implemented as a FastCGI
module using libfcgi, and can be used in conjunction with any FastCGI
capable web server.

Options

		
-c ceph.conf, --conf=ceph.conf

		Use ceph.conf configuration file instead of the default
/etc/ceph/ceph.conf to determine monitor addresses during startup.

		
-m monaddress[:port]

		Connect to specified monitor (instead of looking through
ceph.conf).

		
--rgw-socket-path=path

		Specify a unix domain socket path.

Configuration

Currently it’s the easiest to use the RADOS Gateway with Apache and mod_fastcgi:

FastCgiExternalServer /var/www/s3gw.fcgi -socket /tmp/radosgw.sock

<VirtualHost *:80>
 ServerName rgw.example1.com
 ServerAlias rgw
 ServerAdmin webmaster@example1.com
 DocumentRoot /var/www

 RewriteEngine On
 RewriteRule ^/([a-zA-Z0-9-_.]*)([/]?.*) /s3gw.fcgi?page=$1¶ms=$2&%{QUERY_STRING} [E=HTTP_AUTHORIZATION:%{HTTP:Authorization},L]

 <IfModule mod_fastcgi.c>
 <Directory /var/www>
 Options +ExecCGI
 AllowOverride All
 SetHandler fastcgi-script
 Order allow,deny
 Allow from all
 AuthBasicAuthoritative Off
 </Directory>
 </IfModule>

 AllowEncodedSlashes On
 ServerSignature Off
</VirtualHost>

And the corresponding radosgw script (/var/www/s3gw.fcgi):

#!/bin/sh
exec /usr/bin/radosgw -c /etc/ceph/ceph.conf -n client.radosgw.gateway

The radosgw daemon is a standalone process which needs a configuration
section in the ceph.conf The section name should start with
‘client.radosgw.’ as specified in /etc/init.d/radosgw:

[client.radosgw.gateway]
 host = gateway
 keyring = /etc/ceph/keyring.radosgw.gateway
 rgw socket path = /tmp/radosgw.sock

You will also have to generate a key for the radosgw to use for
authentication with the cluster:

ceph-authtool -C -n client.radosgw.gateway --gen-key /etc/ceph/keyring.radosgw.gateway
ceph-authtool -n client.radosgw.gateway --cap mon 'allow r' --cap osd 'allow rwx' /etc/ceph/keyring.radosgw.gateway

And add the key to the auth entries:

ceph auth add client.radosgw.gateway --in-file=keyring.radosgw.gateway

Now you can start Apache and the radosgw daemon:

/etc/init.d/apache2 start
/etc/init.d/radosgw start

Usage Logging

The radosgw maintains an asynchronous usage log. It accumulates
statistics about user operations and flushes it periodically. The
logs can be accessed and managed through radosgw-admin.

The information that is being logged contains total data transfer,
total operations, and total successful operations. The data is being
accounted in an hourly resolution under the bucket owner, unless the
operation was done on the service (e.g., when listing a bucket) in
which case it is accounted under the operating user.

Following is an example configuration:

[client.radosgw.gateway]
 rgw enable usage log = true
 rgw usage log tick interval = 30
 rgw usage log flush threshold = 1024
 rgw usage max shards = 32
 rgw usage max user shards = 1

The total number of shards determines how many total objects hold the
usage log information. The per-user number of shards specify how many
objects hold usage information for a single user. The tick interval
configures the number of seconds between log flushes, and the flush
threshold specify how many entries can be kept before resorting to
synchronous flush.

Availability

radosgw is part of the Ceph distributed file system. Please refer
to the Ceph documentation at http://ceph.com/docs for more
information.

See also

ceph(8)
radosgw-admin(8)

 © Copyright 2012, Inktank Storage, Inc..

source/get-tarballs.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Ceph Source Code »

Downloading a Ceph Release Tarball

As Ceph development progresses, the Ceph team releases new versions of the
source code. You may download source code tarballs for Ceph releases here:

Ceph Release Tarballs [http://ceph.com/download/]

 © Copyright 2012, Inktank Storage, Inc..

cephfs/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

Ceph FS

The Ceph FS file system is a POSIX-compliant file system that uses a RADOS
cluster to store its data. Ceph FS uses the same RADOS object storage device
system as RADOS block devices and RADOS object stores such as the RADOS gateway
with its S3 and Swift APIs, or native bindings. Using Ceph FS requires at least
one metadata server in your ceph.conf configuration file.

		Mount Ceph FS

		Mount Ceph FS as FUSE

		Mount Ceph FS in ``fstab``

 © Copyright 2012, Inktank Storage, Inc..

ops/manage/key.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operations »

 		Managing a Ceph cluster »

Managing crypto keys

Types of keys

Todo

client, osd, mds, mon; id, no id

Capabilities

Adding a new key

Setting capabilities for a key

Revoking a key

 © Copyright 2012, Inktank Storage, Inc..

api/libradospp.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		API Documentation »

LibradosPP (C++)

Todo

write me!

 © Copyright 2012, Inktank Storage, Inc..

_images/chef.png
Chef Server

Chef Workstation

Chef Nodes

_static/up.png

man/8/ceph-clsinfo.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

ceph-clsinfo – show class object information

Synopsis

ceph-clsinfo [options] ... filename

Description

ceph-clsinfo can show name, version, and architecture information
about a specific class object.

Options

		
-n, --name

		Shows the class name

		
-v, --version

		Shows the class version

		
-a, --arch

		Shows the class architecture

Availability

ceph-clsinfo is part of the Ceph distributed file system. Please
refer to the Ceph documentation at http://ceph.com/docs for more
information.

See also

ceph(8)

 © Copyright 2012, Inktank Storage, Inc..

init/check-cluster-health.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operating a Cluster »

Checking Cluster Health

When you start the Ceph cluster, it may take some time to reach a healthy
state. You can check on the health of your Ceph cluster with the following:

ceph health

If you specified non-default locations for your configuration or keyring:

ceph -c /path/to/conf -k /path/to/keyring health

Upon starting the Ceph cluster, you will likely encounter a health
warning such as HEALTH_WARN XXX num pgs stale. Wait a few moments and check
it again. When your cluster is ready, ceph health should return a message
such as HEALTH_OK. At that point, it is okay to begin using the cluster.

 © Copyright 2012, Inktank Storage, Inc..

dev/rbd-layering.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

RBD Layering

RBD layering refers to the creation of copy-on-write clones of block
devices. This allows for fast image creation, for example to clone a
golden master image of a virtual machine into a new instance. To
simplify the semantics, you can only create a clone of a snapshot -
snapshots are always read-only, so the rest of the image is
unaffected, and there’s no possibility of writing to them
accidentally.

From a user’s perspective, a clone is just like any other rbd image.
You can take snapshots of them, read/write them, resize them, etc.
There are no restrictions on clones from a user’s viewpoint.

Note: the terms child and parent below mean an rbd image created
by cloning, and the rbd image snapshot a child was cloned from.

Command line interface

Before cloning a snapshot, you must mark it as protected, to prevent
it from being deleted while child images refer to it:

$ rbd snap protect pool/image@snap

Then you can perform the clone:

$ rbd clone [--parent] pool/parent@snap [--image] pool2/child1

You can create a clone with different object sizes from the parent:

$ rbd clone --order 25 pool/parent@snap pool2/child2

To delete the parent, you must first mark it unprotected, which checks
that there are no children left:

$ rbd snap unprotect pool/image@snap
Cannot unprotect: Still in use by pool2/image2
$ rbd children pool/image@snap
pool2/child1
pool2/child2
$ rbd flatten pool2/child1
$ rbd rm pool2/child2
$ rbd snap rm pool/image@snap
Cannot remove a protected snapshot: pool/image@snap
$ rbd unprotect pool/image@snap

Then the snapshot can be deleted like normal:

$ rbd snap rm pool/image@snap

Implementation

Data Flow

In the initial implementation, called ‘trivial layering’, there will
be no tracking of which objects exist in a clone. A read that hits a
non-existent object will attempt to read from the parent snapshot, and
this will continue recursively until an object exists or an image with
no parent is found. This is done through the normal read path from
the parent, so differing object sizes between parents and children
do not matter.

Before a write to an object is performed, the object is checked for
existence. If it doesn’t exist, a copy-up operation is performed,
which means reading the relevant range of data from the parent
snapshot and writing it (plus the original write) to the child
image. To prevent races with multiple writes trying to copy-up the
same object, this copy-up operation will include an atomic create. If
the atomic create fails, the original write is done instead. This
copy-up operation is implemented as a class method so that extra
metadata can be stored by it in the future. In trivial layering, the
copy-up operation copies the entire range needed to the child object
(that is, the full size of the child object). A future optimization
could make this copy-up more fine-grained.

Another future optimization could be storing a bitmap of which objects
actually exist in a child. This would obviate the check for existence
before each write, and let reads go directly to the parent if needed.

These optimizations are discussed in:

http://marc.info/?l=ceph-devel&m=129867273303846

Parent/Child relationships

Children store a reference to their parent in their header, as a tuple
of (pool id, image id, snapshot id). This is enough information to
open the parent and read from it.

In addition to knowing which parent a given image has, we want to be
able to tell if a protected snapshot still has children. This is
accomplished with a new per-pool object, rbd_children, which maps
(parent pool id, parent image id, parent snapshot id) to a list of
child image ids. This is stored in the same pool as the child image
because the client creating a clone already has read/write access to
everything in this pool, but may not have write access to the parent’s
pool. This lets a client with read-only access to one pool clone a
snapshot from that pool into a pool they have full access to. It
increases the cost of unprotecting an image, since this needs to check
for children in every pool, but this is a rare operation. It would
likely only be done before removing old images, which is already much
more expensive because it involves deleting every data object in the
image.

Protection

Internally, protection_state is a field in the header object that
can be in three states. “protected”, “unprotected”, and
“unprotecting”. The first two are set as the result of “rbd
protect/unprotect”. The “unprotecting” state is set while the “rbd
unprotect” command checks for any child images. Only snapshots in the
“protected” state may be cloned, so the “unprotected” state prevents
a race like:

		A: walk through all pools, look for clones, find none

		B: create a clone

		A: unprotect parent

		A: rbd snap rm pool/parent@snap

Resizing

Resizing an rbd image is like truncating a sparse file. New space is
treated as zeroes, and shrinking an rbd image deletes the contents
beyond the old bounds. This means that if you have a 10G image full of
data, and you resize it down to 5G and then up to 10G again, the last
5G is treated as zeroes (and any objects that held that data were
removed when the image was shrunk).

Layering complicates this because the absence of an object no longer
implies it should be treated as zeroes - if the object is part of a
clone, it may mean that some data needs to be read from the parent.

To preserve the resizing behavior for clones, we need to keep track of
which objects could be stored in the parent. We can track this as the
amount of overlap the child has with the parent, since resizing only
changes the end of an image. When a child is created, its overlap
is the size of the parent snapshot. On each subsequent resize, the
overlap is min(overlap, new_size). That is, shrinking the image
may shrinks the overlap, but increasing the image’s size does not
change the overlap.

Objects that do not exist past the overlap are treated as zeroes.
Objects that do not exist before that point fall back to reading
from the parent.

Since this overlap changes over time, we store it as part of the
metadata for a snapshot as well.

Renaming

Currently the rbd header object (that stores all the metadata about an
image) is named after the name of the image. This makes renaming
disrupt clients who have the image open (such as children reading from
a parent). To avoid this, we can name the header object by the
id of the image, which does not change. That is, the name of the
header object could be rbd_header.$id, where $id is a unique id for
the image in the pool.

When a client opens an image, all it knows is the name. There is
already a per-pool rbd_directory object that maps image names to
ids, but if we relied on it to get the id, we could not open any
images in that pool if that single object was unavailable. To avoid
this dependency, we can store the id of an image in an object called
rbd_id.$image_name, where $image_name is the name of the image. The
per-pool rbd_directory object is still useful for listing all images
in a pool, however.

Header changes

The header needs a few new fields:

		int64_t parent_pool_id

		string parent_image_id

		uint64_t parent_snap_id

		uint64_t overlap (how much of the image may be referring to the parent)

These are stored in a “parent” key, which is only present if the image
has a parent.

cls_rbd

Some new methods are needed:

/***************** methods on the rbd header *********************/
/**
 * Sets the parent and overlap keys.
 * Fails if any of these keys exist, since the image already
 * had a parent.
 */
set_parent(uint64_t pool_id, string image_id, uint64_t snap_id)

/**
 * returns the parent pool id, image id, snap id, and overlap, or -ENOENT
 * if parent_pool_id does not exist or is -1
 */
get_parent(uint64_t snapid)

/**
 * Removes the parent key
 */
remove_parent() // after all parent data is copied to the child

/*************** methods on the rbd_children object *****************/

add_child(uint64_t parent_pool_id, string parent_image_id,
 uint64_t parent_snap_id, string image_id);
remove_child(uint64_t parent_pool_id, string parent_image_id,
 uint64_t parent_snap_id, string image_id);
/**
 * List ids of a given parent
 */
get_children(uint64_t parent_pool_id, string parent_image_id,
 uint64_t parent_snap_id, uint64_t max_return,
 string start);
/**
 * list parent
 */
get_parents(uint64_t max_return, uint64_t start_pool_id,
 string start_image_id, string start_snap_id);

/************ methods on the rbd_id.$image_name object **************/

set_id(string id)
get_id()

/************** methods on the rbd_directory object *****************/

dir_get_id(string name);
dir_get_name(string id);
dir_list(string start_after, uint64_t max_return);
dir_add_image(string name, string id);
dir_remove_image(string name, string id);
dir_rename_image(string src, string dest, string id);

Two existing methods will change if the image supports
layering:

snapshot_add - stores current overlap and has_parent with
 other snapshot metadata (images that don't have
 layering enabled aren't affected)

set_size - will adjust the parent overlap down as needed.

librbd

Opening a child image opens its parent (and this will continue
recursively as needed). This means that an ImageCtx will contain a
pointer to the parent image context. Differing object sizes won’t
matter, since reading from the parent will go through the parent
image context.

Discard will need to change for layered images so that it only
truncates objects, and does not remove them. If we removed objects, we
could not tell if we needed to read them from the parent.

A new clone method will be added, which takes the same arguments as
create except size (size of the parent image is used).

Instead of expanding the rbd_info struct, we will break the metadata
retrieval into several api calls. Right now, the only users of
rbd_stat() other than ‘rbd info’ only use it to retrieve image size.

 © Copyright 2012, Inktank Storage, Inc..

rbd/qemu-rbd.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Block Devices »

QEMU and RBD

Ceph integrates with the QEMU virtual machine. For details on QEMU, see
QEMU Open Source Processor Emulator [http://wiki.qemu.org/Main_Page]. For QEMU documentation, see
QEMU Manual [http://wiki.qemu.org/Manual].

Important

To use RBD with QEMU, you must have a running Ceph cluster.

Installing QEMU on Ubuntu 12.04 Precise

QEMU packages are incorporated into the Ubuntu 12.04 precise distribution. To
install QEMU on precise, execute the following:

sudo apt-get install qemu

Installing QEMU on Earlier Versions of Ubuntu

For Ubuntu distributions 11.10 oneiric and earlier, you must install
the 0.15 version of QEMU or later. To build QEMU from source, use the
following procedure:

cd {your-development-directory}
git clone git://git.qemu.org/qemu.git
cd qemu
./configure --enable-rbd
make; make install

Creating RBD Images with QEMU

You can create an RBD image from QEMU. You must specify rbd,
the pool name, and the name of the image you wish to create. You must also
specify the size of the image.

qemu-img create -f rbd rbd:{pool-name}/{image-name} {size}

For example:

qemu-img create -f rbd rbd:data/foo 10G

Resizing RBD Images with QEMU

You can resize an RBD image from QEMU. You must specify rbd,
the pool name, and the name of the image you wish to resize. You must also
specify the size of the image.

qemu-img resize -f rbd rbd:{pool-name}/{image-name} {size}

For example:

qemu-img resize -f rbd rbd:data/foo 10G

Retrieving RBD Image Information with QEMU

You can retrieve RBD image information from QEMU. You must
specify rbd, the pool name, and the name of the image.

qemu-img info -f rbd rbd:{pool-name}/{image-name}

For example:

qemu-img info -f rbd rbd:data/foo

 © Copyright 2012, Inktank Storage, Inc..

config-cluster/mds-config-ref.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Configuration »

 		Ceph Configuration Files »

MDS Config Reference

mds max file size

		Description:		

		Type:		64-bit Integer Unsigned

		Default:		1ULL << 40

mds cache size

		Description:		

		Type:		32-bit Integer

		Default:		100000

mds cache mid

		Description:		

		Type:		Float

		Default:		0.7

mds mem max

		Description:		// KB

		Type:		32-bit Integer

		Default:		1048576

mds dir commit ratio

		Description:		

		Type:		Float

		Default:		0.5

mds dir max commit size

		Description:		// MB

		Type:		32-bit Integer

		Default:		90

mds decay halflife

		Description:		

		Type:		Float

		Default:		5

mds beacon interval

		Description:		

		Type:		Float

		Default:		4

mds beacon grace

		Description:		

		Type:		Float

		Default:		15

mds blacklist interval

		Description:		// how long to blacklist failed nodes

		Type:		Float

		Default:		24.0*60.0

mds session timeout

		Description:		// cap bits and leases time out if client idle

		Type:		Float

		Default:		60

mds session autoclose

		Description:		// autoclose idle session

		Type:		Float

		Default:		300

mds reconnect timeout

		Description:		// secs to wait for clients during mds restart

		Type:		Float

		Default:		45

mds tick interval

		Description:		

		Type:		Float

		Default:		5

mds dirstat min interval

		Description:		//try to avoid propagating more often than x

		Type:		Float

		Default:		1

mds scatter nudge interval

		Description:		// how quickly dirstat changes propagate up

		Type:		Float

		Default:		5

mds client prealloc inos

		Description:		

		Type:		32-bit Integer

		Default:		1000

mds early reply

		Description:		

		Type:		Boolean

		Default:		true

mds use tmap

		Description:		// use trivialmap for dir updates

		Type:		Boolean

		Default:		true

mds default dir hash

		Description:		CEPH STR HASH RJENKINS

		Type:		32-bit Integer

		Default:		

mds log

		Description:		

		Type:		Boolean

		Default:		true

mds log skip corrupt events

		Description:		

		Type:		Boolean

		Default:		false

mds log max events

		Description:		

		Type:		32-bit Integer

		Default:		-1

mds log max segments

		Description:		// segment size defined by FileLayout above

		Type:		32-bit Integer

		Default:		30

mds log max expiring

		Description:		

		Type:		32-bit Integer

		Default:		20

mds log eopen size

		Description:		// # open inodes per log entry

		Type:		32-bit Integer

		Default:		100

mds bal sample interval

		Description:		// every 5 seconds

		Type:		Float

		Default:		3

mds bal replicate threshold

		Description:		

		Type:		Float

		Default:		8000

mds bal unreplicate threshold

		Description:		

		Type:		Float

		Default:		0

mds bal frag

		Description:		

		Type:		Boolean

		Default:		false

mds bal split size

		Description:		

		Type:		32-bit Integer

		Default:		10000

mds bal split rd

		Description:		

		Type:		Float

		Default:		25000

mds bal split wr

		Description:		

		Type:		Float

		Default:		10000

mds bal split bits

		Description:		

		Type:		32-bit Integer

		Default:		3

mds bal merge size

		Description:		

		Type:		32-bit Integer

		Default:		50

mds bal merge rd

		Description:		

		Type:		Float

		Default:		1000

mds bal merge wr

		Description:		

		Type:		Float

		Default:		1000

mds bal interval

		Description:		// seconds

		Type:		32-bit Integer

		Default:		10

mds bal fragment interval

		Description:		// seconds

		Type:		32-bit Integer

		Default:		5

mds bal idle threshold

		Description:		

		Type:		Float

		Default:		0

mds bal max

		Description:		

		Type:		32-bit Integer

		Default:		-1

mds bal max until

		Description:		

		Type:		32-bit Integer

		Default:		-1

mds bal mode

		Description:		

		Type:		32-bit Integer

		Default:		0

mds bal min rebalance

		Description:		// must be x above avg before we export

		Type:		Float

		Default:		0.1

mds bal min start

		Description:		// if we need less x. we don’t do anything

		Type:		Float

		Default:		0.2

mds bal need min

		Description:		// take within this range of what we need

		Type:		Float

		Default:		0.8

mds bal need max

		Description:		

		Type:		Float

		Default:		1.2

mds bal midchunk

		Description:		// any sub bigger than this taken in full

		Type:		Float

		Default:		0.3

mds bal minchunk

		Description:		// never take anything smaller than this

		Type:		Float

		Default:		0.001

mds bal target removal min

		Description:		// min bal iters before old target is removed

		Type:		32-bit Integer

		Default:		5

mds bal target removal max

		Description:		// max bal iters before old target is removed

		Type:		32-bit Integer

		Default:		10

mds replay interval

		Description:		// time to wait before starting replay again

		Type:		Float

		Default:		1

mds shutdown check

		Description:		

		Type:		32-bit Integer

		Default:		0

mds thrash exports

		Description:		

		Type:		32-bit Integer

		Default:		0

mds thrash fragments

		Description:		

		Type:		32-bit Integer

		Default:		0

mds dump cache on map

		Description:		

		Type:		Boolean

		Default:		false

mds dump cache after rejoin

		Description:		

		Type:		Boolean

		Default:		false

mds verify scatter

		Description:		

		Type:		Boolean

		Default:		false

mds debug scatterstat

		Description:		

		Type:		Boolean

		Default:		false

mds debug frag

		Description:		

		Type:		Boolean

		Default:		false

mds debug auth pins

		Description:		

		Type:		Boolean

		Default:		false

mds debug subtrees

		Description:		

		Type:		Boolean

		Default:		false

mds kill mdstable at

		Description:		

		Type:		32-bit Integer

		Default:		0

mds kill export at

		Description:		

		Type:		32-bit Integer

		Default:		0

mds kill import at

		Description:		

		Type:		32-bit Integer

		Default:		0

mds kill link at

		Description:		

		Type:		32-bit Integer

		Default:		0

mds kill rename at

		Description:		

		Type:		32-bit Integer

		Default:		0

mds wipe sessions

		Description:		

		Type:		Boolean

		Default:		0

mds wipe ino prealloc

		Description:		

		Type:		Boolean

		Default:		0

mds skip ino

		Description:		

		Type:		32-bit Integer

		Default:		0

max mds

		Description:		

		Type:		32-bit Integer

		Default:		1

mds standby for name

		Description:		

		Type:		String

		Default:		

mds standby for rank

		Description:		

		Type:		32-bit Integer

		Default:		-1

mds standby replay

		Description:		

		Type:		Boolean

		Default:		false

 © Copyright 2012, Inktank Storage, Inc..

install/chef.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Installation »

Installing Chef

Chef defines three types of entities:

		Chef Nodes: Run chef-client, which installs and manages software.

		Chef Server: Interacts with chef-client on Chef nodes.

		Chef Workstation: Manages the Chef server.

[image: ../_images/chef.png]
See Chef Architecture Introduction [http://wiki.opscode.com/display/chef/Architecture+Introduction] for details.

Create a chef User

The chef-client command requires the proper privileges to install and manage
installations. On each Chef node, we recommend creating a chef user with
full root privileges. For example:

ssh user@chef-node
sudo useradd -d /home/chef -m chef
sudo passwd chef

To provide full privileges, add the following to /etc/sudoers.d/chef.

echo "chef ALL = (root) NOPASSWD:ALL" | sudo tee /etc/sudoers.d/chef
sudo chmod 0440 /etc/sudoers.d/chef

If you are using a version of sudo that doesn’t support includes, you will
need to add the following to the /etc/sudoers file:

chef ALL = (root) NOPASSWD:ALL

Important

Do not change the file permissions on /etc/sudoers. Use a
suitable tool such as visudo.

Generate SSH Keys for Chef Clients

Chef’s knife tool can run ssh. To streamline deployments, we
recommend generating an SSH key pair without a passphrase for your
Chef nodes and copying the public key(s) to your Chef nodes so that you
can connect to them from your workstation using ssh from knife
without having to provide a password. To generate a key pair without
a passphrase, execute the following on your Chef workstation.

ssh-keygen
Generating public/private key pair.
Enter file in which to save the key (/ceph-admin/.ssh/id_rsa):
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /ceph-admin/.ssh/id_rsa.
Your public key has been saved in /ceph-admin/.ssh/id_rsa.pub.

You may use RSA or DSA keys. Once you generate your keys, copy them to each
OSD host. For example:

ssh-copy-id chef@your-node

Consider modifying your ~/.ssh/config file so that it defaults to
logging in as chef when no username is specified.

Host myserver01
 Hostname myserver01.fqdn-or-ip-address.com
 User chef
Host myserver02
 Hostname myserver02.fqdn-or-ip-address.com
 User chef

Installing Ruby

Chef requires you to install Ruby. Use the version applicable to your current
Linux distribution and install Ruby on all of your hosts.

sudo apt-get update
sudo apt-get install ruby

Installing Chef and Chef Server on a Server

If you plan on hosting your Chef Server at Opscode [http://www.opscode.com/hosted-chef/] you may skip this step,
but you must make a note of the the fully qualified domain name or IP address
of your Chef Server for knife and chef-client.

First, add Opscode packages to your APT configuration. For example:

sudo tee /etc/apt/sources.list.d/chef.list << EOF
deb http://apt.opscode.com/ $(lsb_release -cs)-0.10 main
deb-src http://apt.opscode.com/ $(lsb_release -cs)-0.10 main
EOF

Next, you must request keys so that APT can verify the packages. Copy
and paste the following line into your command line:

sudo touch /etc/apt/trusted.gpg.d/opscode-keyring.gpg && sudo gpg --fetch-key http://apt.opscode.com/packages@opscode.com.gpg.key && sudo gpg --export 83EF826A | sudo apt-key --keyring /etc/apt/trusted.gpg.d/opscode-keyring.gpg add - && sudo gpg --yes --delete-key 83EF826A

The key is only used by apt, so remove it from the root keyring by
typing Y when prompted to delete it.

Install the Opscode keyring, Chef and Chef server on the host designated
as your Chef Server.

sudo apt-get update && sudo apt-get upgrade && sudo apt-get install opscode-keyring chef chef-server

Enter the fully qualified domain name or IP address for your Chef server. For example:

http://fqdn-or-ip-address.com:4000

The Chef server installer will prompt you to enter a temporary password. Enter
a temporary password (e.g., foo) and proceed with the installation.

Tip

When prompted for a temporary password, you may press OK.
The installer wants you to re-enter the password to confirm it. To
re-enter the password, you must press the ESC key.

Once the installer finishes and activates the Chef server, you may enter the
fully qualified domain name or IP address in a browser to launch the
Chef web UI. For example:

http://fqdn-or-ip-address.com:4000

The Chef web UI will prompt you to enter the username and password.

		login: admin

		password: foo

Once you have entered the temporary password, the Chef web UI will prompt you
to enter a new password.

Install Chef on all Remaining Hosts

Install Chef on all Chef Nodes and on the Chef Workstation (if it is not the
same host as the Chef Server). See Installing Chef Client on Ubuntu or Debian [http://wiki.opscode.com/display/chef/Installing+Chef+Client+on+Ubuntu+or+Debian]
for details.

First, add Opscode packages to your APT configuration. For example:

sudo tee /etc/apt/sources.list.d/chef.list << EOF
deb http://apt.opscode.com/ $(lsb_release -cs)-0.10 main
deb-src http://apt.opscode.com/ $(lsb_release -cs)-0.10 main
EOF

Next, you must request keys so that APT can verify the packages. Copy
and paste the following line into your command line:

sudo touch /etc/apt/trusted.gpg.d/opscode-keyring.gpg && sudo gpg --fetch-key http://apt.opscode.com/packages@opscode.com.gpg.key && sudo gpg --export 83EF826A | sudo apt-key --keyring /etc/apt/trusted.gpg.d/opscode-keyring.gpg add - && sudo gpg --yes --delete-key 83EF826A

The key is only used by apt, so remove it from the root keyring by
typing Y when prompted to delete it.

Install the Opscode keyring and Chef on all hosts other than the Chef Server.

sudo apt-get update && sudo apt-get upgrade && sudo apt-get install opscode-keyring chef

Enter the fully qualified domain name or IP address for your Chef server.
For example:

http://fqdn-or-ip-address.com:4000

Configuring Knife

Once you complete the Chef server installation, install knife on the your
Chef Workstation. If the Chef server is a remote host, use ssh to connect.

ssh chef@fqdn-or-ip-address.com

In the /home/chef directory, create a hidden Chef directory.

mkdir -p ~/.chef

The server generates validation and web UI certificates with read/write
permissions for the user that installed the Chef server. Copy them from the
/etc/chef directory to the ~/.chef directory. Then, change their
ownership to the current user.

sudo cp /etc/chef/validation.pem /etc/chef/webui.pem ~/.chef && sudo chown $(id -u):$(id -g) ~/.chef/*.pem

From the current user’s home directory, configure knife with an initial
API client.

knife configure -i

The configuration will prompt you for inputs. Answer accordingly:

Where should I put the config file? [~/.chef/knife.rb] Press Enter
to accept the default value.

Please enter the chef server URL: If you are installing the
client on the same host as the server, enter http://localhost:4000.
Otherwise, enter an appropriate URL for the server.

Please enter a clientname for the new client: Press Enter
to accept the default value.

Please enter the existing admin clientname: Press Enter
to accept the default value.

Please enter the location of the existing admin client’s private key:
Override the default value so that it points to the .chef directory.
(e.g., /home/chef/.chef/webui.pem)

Please enter the validation clientname: Press Enter to accept
the default value.

Please enter the location of the validation key: Override the
default value so that it points to the .chef directory.
(e.g., /home/chef/.chef/validation.pem)

Please enter the path to a chef repository (or leave blank):
Leave the entry field blank and press Enter.

Add a Cookbook Path

Add cookbook_path to the ~/.chef/knife.rb configuration file
on your Chef workstation. For example:

cookbook_path '/home/{user-name}/chef-cookbooks/'

Then create the path if it doesn’t already exist.

mkdir /home/{user-name}/chef-cookbooks

This is where you will store local copies of cookbooks before uploading
them to the Chef server.

Copy validation.pem to Nodes

Copy the /etc/chef/validation.pem file from your Chef server to
each Chef Node. In a command line shell on the Chef Server, for each node,
replace {nodename} in the following line with the node’s host name and
execute it.

sudo cat /etc/chef/validation.pem | ssh {nodename} "exec sudo tee /etc/chef/validation.pem >/dev/null"

Run chef-client on each Chef Node

Run the chef-client on each Chef Node so that the nodes
register with the Chef server.

ssh chef-node
sudo chef-client

Verify Nodes

Verify that you have setup all the hosts you want to use as
Chef nodes.

knife node list

A list of the nodes you’ve configured should appear.

See the Deploy With Chef section for information
on using Chef to deploy your Ceph cluster.

 © Copyright 2012, Inktank Storage, Inc..

ops/manage/cephfs.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operations »

 		Managing a Ceph cluster »

Managing Cephfs

Mounting

Kernel client

Todo

one time, fstab

FUSE

Todo

one time, fstab

Using custom pools for subtrees

 © Copyright 2012, Inktank Storage, Inc..

api/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

API Documentation

		Librados (C)

		LibradosPP (C++)

		Librbd (Python)

 © Copyright 2012, Inktank Storage, Inc..

ops/manage/failures/mds.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operations »

 		Managing a Ceph cluster »

 		Recovering from failures »

Recovering from ceph-mds failure

 © Copyright 2012, Inktank Storage, Inc..

api/librbdpy.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		API Documentation »

Librbd (Python)

The rbd python module provides file-like access to RBD images.

Example: Creating and writing to an image

To use rbd, you must first connect to RADOS and open an IO
context:

cluster = rados.Rados(conffile='my_ceph.conf')
cluster.connect()
ioctx = cluster.open_ioctx('mypool')

Then you instantiate an :class:rbd.RBD object, which you use to create the
image:

rbd_inst = rbd.RBD()
size = 4 * 1024**3 # 4 GiB
rbd_inst.create(ioctx, 'myimage', size)

To perform I/O on the image, you instantiate an :class:rbd.Image object:

image = rbd.Image(ioctx, 'myimage')
data = 'foo' * 200
image.write(data, 0)

This writes ‘foo’ to the first 600 bytes of the image. Note that data
cannot be :type:unicode - Librbd does not know how to deal with
characters wider than a :c:type:char.

In the end, you’ll want to close the image, the IO context and the connection to RADOS:

image.close()
ioctx.close()
cluster.shutdown()

To be safe, each of these calls would need to be in a separate :finally
block:

cluster = rados.Rados(conffile='my_ceph_conf')
try:
 ioctx = cluster.open_ioctx('my_pool')
 try:
 rbd_inst = rbd.RBD()
 size = 4 * 1024**3 # 4 GiB
 rbd_inst.create(ioctx, 'myimage', size)
 image = rbd.Image(ioctx, 'myimage')
 try:
 data = 'foo' * 200
 image.write(data, 0)
 finally:
 image.close()
 finally:
 ioctx.close()
finally:
 cluster.shutdown()

This can be cumbersome, so the Rados, Ioctx, and
Image classes can be used as context managers that close/shutdown
automatically (see PEP 343 [http://www.python.org/dev/peps/pep-0343]). Using them as context managers, the
above example becomes:

with rados.Rados(conffile='my_ceph.conf') as cluster:
 with cluster.open_ioctx('mypool') as ioctx:
 rbd_inst = rbd.RBD()
 size = 4 * 1024**3 # 4 GiB
 rbd_inst.create(ioctx, 'myimage', size)
 with rbd.Image(ioctx, 'myimage') as image:
 data = 'foo' * 200
 image.write(data, 0)

API Reference

This module is a thin wrapper around librbd.

It currently provides all the synchronous methods of librbd that do
not use callbacks.

Error codes from librbd are turned into exceptions that subclass
Error. Almost all methods may raise Error
(the base class of all rbd exceptions), PermissionError
and IOError, in addition to those documented for the
method.

A number of methods have string arguments, which must not be unicode
to interact correctly with librbd. If unicode is passed to these
methods, a TypeError will be raised.

		
class rbd.RBD

		This class wraps librbd CRUD functions.

		
clone(p_ioctx, p_name, p_snapname, c_ioctx, c_name, features=0, order=None)

		Clone a parent rbd snapshot into a COW sparse child.

		Parameters:		
		p_ioctx – the parent context that represents the parent snap

		p_name – the parent image name

		p_snapname – the parent image snapshot name

		c_ioctx – the child context that represents the new clone

		c_name – the clone (child) name

		features (int) – bitmask of features to enable; if set, must include layering

		order (int) – the image is split into (2**order) byte objects

		Raises :		TypeError

		Raises :		InvalidArgument

		Raises :		ImageExists

		Raises :		FunctionNotSupported

		Raises :		ArgumentOutOfRange

		
create(ioctx, name, size, order=None, old_format=True, features=0)

		Create an rbd image.

		Parameters:		
		ioctx (rados.Ioctx) – the context in which to create the image

		name (str) – what the image is called

		size (int) – how big the image is in bytes

		order (int) – the image is split into (2**order) byte objects

		old_format (bool) – whether to create an old-style image that
is accessible by old clients, but can’t
use more advanced features like layering.

		features (int) – bitmask of features to enable

		Raises :		ImageExists

		
list(ioctx)

		List image names.

		Parameters:		ioctx (rados.Ioctx) – determines which RADOS pool is read

		Returns:		list – a list of image names

		
remove(ioctx, name)

		Delete an RBD image. This may take a long time, since it does
not return until every object that comprises the image has
been deleted. Note that all snapshots must be deleted before
the image can be removed. If there are snapshots left,
ImageHasSnapshots is raised. If the image is still
open, or the watch from a crashed client has not expired,
ImageBusy is raised.

		Parameters:		
		ioctx (rados.Ioctx) – determines which RADOS pool the image is in

		name (str) – the name of the image to remove

		Raises :		ImageNotFound, ImageBusy,
ImageHasSnapshots

		
rename(ioctx, src, dest)

		Rename an RBD image.

		Parameters:		
		ioctx (rados.Ioctx) – determines which RADOS pool the image is in

		src (str) – the current name of the image

		dest (str) – the new name of the image

		Raises :		ImageNotFound, ImageExists

		
version()

		Get the version number of the librbd C library.

		Returns:		a tuple of (major, minor, extra) components of the
librbd version

		
class rbd.Image(ioctx, name, snapshot=None)

		This class represents an RBD image. It is used to perform I/O on
the image and interact with snapshots.

Note: Any method of this class may raise ImageNotFound
if the image has been deleted.

		
close()

		Release the resources used by this image object.

After this is called, this object should not be used.

		
copy(dest_ioctx, dest_name)

		Copy the image to another location.

		Parameters:		
		dest_ioctx (rados.Ioctx) – determines which pool to copy into

		dest_name (str) – the name of the copy

		Raises :		ImageExists

		
create_snap(name)

		Create a snapshot of the image.

		Parameters:		name (str) – the name of the snapshot

		Raises :		ImageExists

		
list_snaps()

		Iterate over the snapshots of an image.

		Returns:		SnapIterator

		
read(offset, length)

		Read data from the image. Raises InvalidArgument if
part of the range specified is outside the image.

		Parameters:		
		offset (int) – the offset to start reading at

		length (int) – how many bytes to read

		Returns:		str - the data read

		Raises :		InvalidArgument, IOError

		
remove_snap(name)

		Delete a snapshot of the image.

		Parameters:		name (str) – the name of the snapshot

		Raises :		IOError

		
resize(size)

		Change the size of the image.

		Parameters:		size (int) – the new size of the image

		
rollback_to_snap(name)

		Revert the image to its contents at a snapshot. This is a
potentially expensive operation, since it rolls back each
object individually.

		Parameters:		name (str) – the snapshot to rollback to

		Raises :		IOError

		
set_snap(name)

		Set the snapshot to read from. Writes will raise ReadOnlyImage
while a snapshot is set. Pass None to unset the snapshot
(reads come from the current image) , and allow writing again.

		Parameters:		name (str or None) – the snapshot to read from, or None to unset the snapshot

		
stat()

		Get information about the image. Currently parent pool and
parent name are always -1 and ‘’.

		Returns:		dict - contains the following keys:
		size (int) - the size of the image in bytes

		obj_size (int) - the size of each object that comprises the
image

		num_objs (int) - the number of objects in the image

		order (int) - log_2(object_size)

		block_name_prefix (str) - the prefix of the RADOS objects used
to store the image

		parent_pool (int) - deprecated

		parent_name (str) - deprecated

		see also :method:format and :method:features

		
write(data, offset)

		Write data to the image. Raises InvalidArgument if
part of the write would fall outside the image.

		Parameters:		
		data (str) – the data to be written

		offset (int) – where to start writing data

		Returns:		int - the number of bytes written

		Raises :		IncompleteWriteError, LogicError,
InvalidArgument, IOError

		
class rbd.SnapIterator(image)

		Iterator over snapshot info for an image.

Yields a dictionary containing information about a snapshot.

Keys are:

		id (int) - numeric identifier of the snapshot

		size (int) - size of the image at the time of snapshot (in bytes)

		name (str) - name of the snapshot

 © Copyright 2012, Inktank Storage, Inc..

man/8/ceph-authtool.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

ceph-authtool – ceph keyring manipulation tool

Synopsis

ceph-authtool keyringfile [-l | –list] [-C | –create-keyring
] [-p | –print] [-n | –name entityname] [–gen-key] [-a |
–add-key base64_key] [–caps capfils]

Description

ceph-authtool is a utility to create, view, and modify a Ceph keyring
file. A keyring file stores one or more Ceph authentication keys and
possibly an associated capability specification. Each key is
associated with an entity name, of the form
{client,mon,mds,osd}.name.

WARNING Ceph provides authentication and protection against
man-in-the-middle attacks once secret keys are in place. However,
data over the wire is not encrypted, which may include the messages
used to configure said keys. The system is primarily intended to be
used in trusted environments.

Options

		
-l, --list

		will list all keys and capabilities present in the keyring

		
-p, --print

		will print an encoded key for the specified entityname. This is
suitable for the mount -o secret= argument

		
-C, --create-keyring

		will create a new keyring, overwriting any existing keyringfile

		
--gen-key

		will generate a new secret key for the specified entityname

		
--add-key

		will add an encoded key to the keyring

		
--cap subsystem capability

		will set the capability for given subsystem

		
--caps capsfile

		will set all of capabilities associated with a given key, for all subsystems

Capabilities

The subsystem is the name of a Ceph subsystem: mon, mds, or
osd.

The capability is a string describing what the given user is allowed
to do. This takes the form of a comma separated list of allow
clauses with a permission specifier containing one or more of rwx for
read, write, and execute permission. The allow * grants full
superuser permissions for the given subsystem.

For example:

can read, write, and execute objects
osd = "allow rwx [pool=foo[,bar]]|[uid=baz[,bay]]"

can access mds server
mds = "allow"

can modify cluster state (i.e., is a server daemon)
mon = "allow rwx"

A librados user restricted to a single pool might look like:

osd = "allow rw pool foo"

A client mounting the file system with minimal permissions would need caps like:

mds = "allow"

osd = "allow rw pool=data"

mon = "allow r"

Caps file format

The caps file format consists of zero or more key/value pairs, one per
line. The key and value are separated by an =, and the value must
be quoted (with ' or ") if it contains any whitespace. The key
is the name of the Ceph subsystem (osd, mds, mon), and the
value is the capability string (see above).

Example

To create a new keyring containing a key for client.foo:

ceph-authtool -C -n client.foo --gen-key keyring

To associate some capabilities with the key (namely, the ability to
mount a Ceph filesystem):

ceph-authtool -n client.foo --cap mds 'allow' --cap osd 'allow rw pool=data' --cap mon 'allow r' keyring

To display the contents of the keyring:

ceph-authtool -l keyring

When mount a Ceph file system, you can grab the appropriately encoded secret key with:

mount -t ceph serverhost:/ mountpoint -o name=foo,secret=`ceph-authtool -p -n client.foo keyring`

Availability

ceph-authtool is part of the Ceph distributed file system. Please
refer to the Ceph documentation at http://ceph.com/docs for more
information.

See also

ceph(8)

 © Copyright 2012, Inktank Storage, Inc..

start/quick-rbd.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Getting Started »

RBD Quick Start

To use RADOS block devices, you must have a running Ceph cluster. You may
execute this quick start on a separate host if you have the Ceph packages and
the /etc/ceph/ceph.conf file installed with the appropriate IP address
and host name settings modified in the /etc/ceph/ceph.conf file.

Create a RADOS Block Device image.

rbd create foo --size 4096

Load the rbd client module.

sudo modprobe rbd

Map the image to a block device.

sudo rbd map foo --pool rbd --name client.admin

Use the block device. In the following example, create a file system.

sudo mkfs.ext4 -m0 /dev/rbd/rbd/foo

Mount the file system.

sudo mkdir /mnt/myrbd
sudo mount /dev/rbd/rbd/foo /mnt/myrbd

 © Copyright 2012, Inktank Storage, Inc..

release-notes.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

Release Notes

v0.48 “argonaut”

Upgrading

		This release includes a disk format upgrade. Each ceph-osd daemon, upon startup, will migrate its locally stored data to the new format. This process can take a while (for large object counts, even hours), especially on non-btrfs file systems.

		To keep the cluster available while the upgrade is in progress, we recommend you upgrade a storage node or rack at a time, and wait for the cluster to recover each time. To prevent the cluster from moving data around in response to the OSD daemons being down for minutes or hours, you may want to:

ceph osd set noout

This will prevent the cluster from marking down OSDs as “out” and re-replicating the data elsewhere. If you do this, be sure to clear the flag when the upgrade is complete:

ceph osd unset noout

		There is a encoding format change internal to the monitor cluster. The monitor daemons are careful to switch to the new format only when all members of the quorum support it. However, that means that a partial quorum with new code may move to the new format, and a recovering monitor running old code will be unable to join (it will crash). If this occurs, simply upgrading the remaining monitor will resolve the problem.

		The ceph tool’s -s and -w commands from previous versions are incompatible with this version. Upgrade your client tools at the same time you upgrade the monitors if you rely on those commands.

		It is not possible to downgrade from v0.48 to a previous version.

Notable changes

		osd: stability improvements

		osd: capability model simplification

		osd: simpler/safer –mkfs (no longer removes all files; safe to re-run on active osd)

		osd: potentially buggy FIEMAP behavior disabled by default

		rbd: caching improvements

		rbd: improved instrumentation

		rbd: bug fixes

		radosgw: new, scalable usage logging infrastructure

		radosgw: per-user bucket limits

		mon: streamlined process for setting up authentication keys

		mon: stability improvements

		mon: log message throttling

		doc: improved documentation (ceph, rbd, radosgw, chef, etc.)

		config: new default locations for daemon keyrings

		config: arbitrary variable substitutions

		improved ‘admin socket’ daemon admin interface (ceph –admin-daemon ...)

		chef: support for multiple monitor clusters

		upstart: basic support for monitors, mds, radosgw; osd support still a work in progress.

The new default keyring locations mean that when enabling authentication (auth supported = cephx), keyring locations do not need to be specified if the keyring file is located inside the daemon’s data directory (/var/lib/ceph/$type/ceph-$id by default).

There is also a lot of librbd code in this release that is laying the groundwork for the upcoming layering functionality, but is not actually used. Likewise, the upstart support is still incomplete and not recommended; we will backport that functionality later if it turns out to be non-disruptive.

 © Copyright 2012, Inktank Storage, Inc..

dev/generatedocs.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

Building Ceph Documentation

Ceph utilizes Python’s Sphinx documentation tool. For details on
the Sphinx documentation tool, refer to The Sphinx Documentation Tool [http://sphinx.pocoo.org/].

To build the Ceph documentation set, you must:

		Clone the Ceph repository

		Install the required tools

		Build the documents

Clone the Ceph Repository

To clone the Ceph repository, you must have git installed
on your local host. To install git, execute:

$ sudo apt-get install git

You must also have a github account. If you do not have a
github account, go to github [http://github.com] and register.

You must set up SSH keys with github to clone the Ceph
repository. If you do not have SSH keys for github, execute:

$ ssh-keygen -d

Get the key to add to your github account:

$ cat .ssh/id_dsa.pub

Copy the public key. Then, go to your your github account,
click on Account Settings (i.e., the tools icon); then,
click SSH Keys on the left side navbar.

Click Add SSH key in the SSH Keys list, enter a name for
the key, paste the key you generated, and press the Add key
button.

To clone the Ceph repository, execute:

$ git clone git@github:ceph/ceph.git

You should have a full copy of the Ceph repository.

Install the Required Tools

If you do not have Sphinx and its dependencies installed,
a list of dependencies will appear in the output. Install
the dependencies on your system, and then execute the build.

To run Sphinx, at least the following are required:

		python-dev

		python-pip

		python-virtualenv

		libxml2-dev

		libxslt-dev

		doxygen

		ditaa

		graphviz

Execute apt-get install for each dependency that isn’t
installed on your host.

$ apt-get install python-dev python-pip python-virtualenv libxml2-dev libxslt-dev doxygen ditaa graphviz

Build the Documents

Once you have installed all the dependencies, execute the build:

$ cd ceph
$ admin/build-doc

Once you build the documentation set, you may navigate to the source directory to view it:

$ cd build-doc/output

There should be an html directory and a man directory containing documentation
in HTML and manpage formats respectively.

 © Copyright 2012, Inktank Storage, Inc..

radosgw/s3/authentication.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		RADOS S3 API »

Authentication and ACLs

Requests to the RADOS Gateway (RGW) can be either authenticated or
unauthenticated. RGW assumes unauthenticated requests are sent by an anonymous
user. RGW supports canned ACLs.

Authentication

Authenticating a request requires including an access key and a Hash-based
Message Authentication Code (HMAC) in the request before it is sent to the
RGW server. RGW uses an S3-compatible authentication approach.

HTTP/1.1
PUT /buckets/bucket/object.mpeg
Host: cname.domain.com
Date: Mon, 2 Jan 2012 00:01:01 +0000
Content-Encoding: mpeg
Content-Length: 9999999

Authorization: AWS {access-key}:{hash-of-header-and-secret}

In the foregoing example, replace {access-key} with the value for your access
key ID followed by a colon (:). Replace {hash-of-header-and-secret} with
a hash of the header string and the secret corresponding to the access key ID.

To generate the hash of the header string and secret, you must:

		Get the value of the header string.

		Normalize the request header string into canonical form.

		Generate an HMAC using a SHA-1 hashing algorithm.
See RFC 2104 [http://www.ietf.org/rfc/rfc2104.txt] and HMAC [http://en.wikipedia.org/wiki/HMAC] for details.

		Encode the hmac result as base-64.

To normalize the header into canonical form:

		Get all fields beginning with x-amz-.

		Ensure that the fields are all lowercase.

		Sort the fields lexicographically.

		Combine multiple instances of the same field name into a
single field and separate the field values with a comma.

		Replace white space and line breaks in field values with a single space.

		Remove white space before and after colons.

		Append a new line after each field.

		Merge the fields back into the header.

Replace the {hash-of-header-and-secret} with the base-64 encoded HMAC string.

Access Control Lists (ACLs)

RGW supports S3-compatible ACL functionality. An ACL is a list of access grants
that specify which operations a user can perform on a bucket or on an object.
Each grant has a different meaning when applied to a bucket versus applied to
an object:

		Permission
		Bucket
		Object

		READ
		Grantee can list the objects in the bucket.
		Grantee can read the object.

		WRITE
		Grantee can write or delete objects in the bucket.
		N/A

		READ_ACP
		Grantee can read bucket ACL.
		Grantee can read the object ACL.

		WRITE_ACP
		Grantee can write bucket ACL.
		Grantee can write to the object ACL.

		FULL_CONTROL
		Grantee has full permissions for object in the bucket.
		Grantee can read or write to the object ACL.

 © Copyright 2012, Inktank Storage, Inc..

install/rpm.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Installation »

Installing RPM Packages

We do not yet build RPM packages for Ceph releases. You can build them yourself from
the source tree by running:

rpmbuild

See Ceph Source Code for details. Once you have an RPM, you can
install it with:

rpm -i ceph-*.rpm

 © Copyright 2012, Inktank Storage, Inc..

_static/logo.png

dev/config.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

Configuration Management System

The configuration management system exists to provide every daemon with the
proper configuration information. The configuration can be viewed as a set of
key-value pairs.

		How can the configuration be set? Well, there are several sources:

		
		the ceph configuration file, usually named ceph.conf

		
		command line arguments::

		–debug-ms=1
–debug-pg=10
etc.

		arguments injected at runtime by using injectargs

The Configuration File

Most configuration settings originate in the Ceph configuration file.

		How do we find the configuration file? Well, in order, we check:

		
		the default locations

		the environment variable CEPH_CONF

		the command line argument -c

Each stanza of the configuration file describes the key-value pairs that will be in
effect for a particular subset of the daemons. The “global” stanza applies to
everything. The “mon”, “osd”, and “mds” stanzas specify settings to take effect
for all monitors, all osds, and all mds servers, respectively. A stanza of the
form mon.$name, osd.$name, or mds.$name gives settings for the monitor, OSD, or
MDS of that name, respectively. Configuration values that appear later in the
file win over earlier ones.

A sample configuration file can be found in src/sample.ceph.conf.

Metavariables

The configuration system allows any configuration value to be
substituted into another value using the $varname syntax, similar
to how bash shell expansion works.

		A few additional special metavariables are also defined:

		
		$host: expands to the current hostname

		$type: expands to one of “mds”, “osd”, “mon”, or “client”

		$id: expands to the daemon identifier. For osd.0, this would be 0; for mds.a, it would be a; for client.admin, it would be admin.

		$num: same as $id

		$name: expands to $type.$id

Readin configuration values

There are two ways for Ceph code to get configuration values. One way is to
read it directly from a variable named “g_conf,” or equivalently,
“g_ceph_ctx->_conf.” The other is to register an observer that will called
every time the relevant configuration values changes. This observer will be
called soon after the initial configuration is read, and every time after that
when one of the relevant values changes. Each observer tracks a set of keys
and is invoked only when one of the relevant keys changes.

The interface to implement is found in common/config_obs.h.

		The observer method should be preferred in new code because

		
		It is more flexible, allowing the code to do whatever reinitialization needs
to be done to implement the new configuration value.

		It is the only way to create a std::string configuration variable that can
be changed by injectargs.

		Even for int-valued configuration options, changing the values in one thread
while another thread is reading them can lead to subtle and
impossible-to-diagnose bugs.

For these reasons, reading directly from g_conf should be considered deprecated
and not done in new code. Do not ever alter g_conf.

Changing configuration values

Configuration values can be changed by calling g_conf->set_val. After changing
the configuration, you should call g_conf->apply_changes to re-run all the
affected configuration observers. For convenience, you can call
g_conf->set_val_or_die to make a configuration change which you think should
never fail.

Injectargs, parse_argv, and parse_env are three other functions which modify
the configuration. Just like with set_val, you should call apply_changes after
calling these functions to make sure your changes get applied.

 © Copyright 2012, Inktank Storage, Inc..

_images/ditaa-e7715454848e7aa8a367408543c1e1a17bfb3951.png
Create a Connection

Create a Container

\

Create an Object

Add/Update Object Metadata

\

List Owned Containers

List a Container's Contents

\

Get an Object's Metadata

Retrieve an Object

\

Delete an Object

Delete a Container

ops/manage/failures/radosgw.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operations »

 		Managing a Ceph cluster »

 		Recovering from failures »

Recovering from radosgw failure

HTTP Request Errors

Examining the access and error logs for the web server itself is
probably the first step in identifying what is going on. If there is
a 500 error, that usually indicates a problem communicating with the
radosgw daemon. Ensure the daemon is running, its socket path is
configured, and that the web server is looking for it in the proper
location.

Crashed radosgw process

If the radosgw process dies, you will normally see a 500 error
from the web server (apache, nginx, etc.). In that situation, simply
restarting radosgw will restore service.

To diagnose the cause of the crash, check the log in /var/log/ceph
and/or the core file (if one was generated).

Blocked radosgw Requests

If some (or all) radosgw requests appear to be blocked, you can get
some insight into the internal state of the radosgw daemon via
its admin socket. By default, there will be a socket configured to
reside in /var/run/ceph, and the daemon can be queried with:

$ ceph --admin-daemon /var/run/ceph/client.rgw help
help list available commands
objecter_requests show in-progress osd requests
perfcounters_dump dump perfcounters value
perfcounters_schema dump perfcounters schema
version get protocol version

Of particular interest:

$ ceph --admin-daemon /var/run/ceph/client.rgw objecter_requests
...

will dump information about current in-progress requests with the
RADOS cluster. This allows one to identify if any requests are blocked
by a non-responsive ceph-osd. For example, one might see:

{ "ops": [
 { "tid": 1858,
 "pg": "2.d2041a48",
 "osd": 1,
 "last_sent": "2012-03-08 14:56:37.949872",
 "attempts": 1,
 "object_id": "fatty_25647_object1857",
 "object_locator": "@2",
 "snapid": "head",
 "snap_context": "0=[]",
 "mtime": "2012-03-08 14:56:37.949813",
 "osd_ops": [
 "write 0~4096"]},
 { "tid": 1873,
 "pg": "2.695e9f8e",
 "osd": 1,
 "last_sent": "2012-03-08 14:56:37.970615",
 "attempts": 1,
 "object_id": "fatty_25647_object1872",
 "object_locator": "@2",
 "snapid": "head",
 "snap_context": "0=[]",
 "mtime": "2012-03-08 14:56:37.970555",
 "osd_ops": [
 "write 0~4096"]}],
"linger_ops": [],
"pool_ops": [],
"pool_stat_ops": [],
"statfs_ops": []}

In this dump, two requests are in progress. The last_sent field is
the time the RADOS request was sent. If this is a while ago, it suggests
that the OSD is not responding. For example, for request 1858, you could
check the OSD status with:

$ ceph pg map 2.d2041a48
osdmap e9 pg 2.d2041a48 (2.0) -> up [1,0] acting [1,0]

This tells us to look at osd.1, the primary copy for this PG:

$ ceph --admin-daemon /var/run/ceph/osd.1.asok
{ "num_ops": 651,
 "ops": [
 { "description": "osd_op(client.4124.0:1858 fatty_25647_object1857 [write 0~4096] 2.d2041a48)",
 "received_at": "1331247573.344650",
 "age": "25.606449",
 "flag_point": "waiting for sub ops",
 "client_info": { "client": "client.4124",
 "tid": 1858}},
...

The flag_point field indicates that the OSD is currently waiting
for replicas to respond, in this case osd.0.

 © Copyright 2012, Inktank Storage, Inc..

_images/graphviz-36fd77192a47a9a64a0a9175ac8057ae4d222979.png

dev/file-striping.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

File striping

The text below describes how files from Ceph file system clients are
stored across objects stored in RADOS.

ceph_file_layout

Ceph distributes (stripes) the data for a given file across a number
of underlying objects. The way file data is mapped to those objects
is defined by the ceph_file_layout structure. The data distribution
is a modified RAID 0, where data is striped across a set of objects up
to a (per-file) fixed size, at which point another set of objects
holds the file’s data. The second set also holds no more than the
fixed amount of data, and then another set is used, and so on.

Defining some terminology will go a long way toward explaining the
way file data is laid out across Ceph objects.

		
		file

		A collection of contiguous data, named from the perspective of
the Ceph client (i.e., a file on a Linux system using Ceph
storage). The data for a file is divided into fixed-size
“stripe units,” which are stored in ceph “objects.”

		
		stripe unit

		The size (in bytes) of a block of data used in the RAID 0
distribution of a file. All stripe units for a file have equal
size. The last stripe unit is typically incomplete–i.e. it
represents the data at the end of the file as well as unused
“space” beyond it up to the end of the fixed stripe unit size.

		
		stripe count

		The number of consecutive stripe units that constitute a RAID 0
“stripe” of file data.

		
		stripe

		A contiguous range of file data, RAID 0 striped across “stripe
count” objects in fixed-size “stripe unit” blocks.

		
		object

		A collection of data maintained by Ceph storage. Objects are
used to hold portions of Ceph client files.

		
		object set

		A set of objects that together represent a contiguous portion of
a file.

Three fields in the ceph_file_layout structure define this mapping:

u32 fl_stripe_unit;
u32 fl_stripe_count;
u32 fl_object_size;

(They are actually maintained in their on-disk format, __le32.)

The role of the first two fields should be clear from the
definitions above.

The third field is the maximum size (in bytes) of an object used to
back file data. The object size is a multiple of the stripe unit.

A file’s data is blocked into stripe units, and consecutive stripe
units are stored on objects in an object set. The number of objects
in a set is the same as the stripe count. No object storing file
data will exceed the file’s designated object size, so after some
fixed number of complete stripes, a new object set is used to store
subsequent file data.

Note that by default, Ceph uses a simple striping strategy in which
object_size equals stripe_unit and stripe_count is 1. This simply
puts one stripe_unit in each object.

Here’s a more complex example:

file size = 1 trillion = 1000000000000 bytes

fl_stripe_unit = 64KB = 65536 bytes
fl_stripe_count = 5 stripe units per stripe
fl_object_size = 64GB = 68719476736 bytes

This means:

file stripe size = 64KB * 5 = 320KB = 327680 bytes
each object holds 64GB / 64KB = 1048576 stripe units
file object set size = 64GB * 5 = 320GB = 343597383680 bytes
 (also 1048576 stripe units * 327680 bytes per stripe unit)

So the file’s 1 trillion bytes can be divided into complete object
sets, then complete stripes, then complete stripe units, and finally
a single incomplete stripe unit:

- 1 trillion bytes / 320GB per object set = 2 complete object sets
 (with 312805232640 bytes remaining)
- 312805232640 bytes / 320KB per stripe = 954605 complete stripes
 (with 266240 bytes remaining)
- 266240 bytes / 64KB per stripe unit = 4 complete stripe units
 (with 4096 bytes remaining)
- and the final incomplete stripe unit holds those 4096 bytes.

The ASCII art below attempts to capture this:

 _________ _________ _________ _________ _________
 /object 0\ /object 1\ /object 2\ /object 3\ /object 4\
 +=========+ +=========+ +=========+ +=========+ +=========+
 | stripe | | stripe | | stripe | | stripe | | stripe |
o | unit | | unit | | unit | | unit | | unit | stripe 0
b | 0 | | 1 | | 2 | | 3 | | 4 |
j |---------| |---------| |---------| |---------| |---------|
e | stripe | | stripe | | stripe | | stripe | | stripe |
c | unit | | unit | | unit | | unit | | unit | stripe 1
t | 5 | | 6 | | 7 | | 8 | | 9 |
 |---------| |---------| |---------| |---------| |---------|
s | . | | . | | . | | . | | . |
e
t | . | | . | | . | | . | | . |
 |---------| |---------| |---------| |---------| |---------|
0 | stripe | | stripe | | stripe | | stripe | | stripe | stripe
 | unit | | unit | | unit | | unit | | unit | 1048575
 | 5242875 | | 5242876 | | 5242877 | | 5242878 | | 5242879 |
 \=========/ \=========/ \=========/ \=========/ \=========/

 _________ _________ _________ _________ _________
 /object 5\ /object 6\ /object 7\ /object 8\ /object 9\
 +=========+ +=========+ +=========+ +=========+ +=========+
 | stripe | | stripe | | stripe | | stripe | | stripe | stripe
o | unit | | unit | | unit | | unit | | unit | 1048576
b | 5242880 | | 5242881 | | 5242882 | | 5242883 | | 5242884 |
j |---------| |---------| |---------| |---------| |---------|
e | stripe | | stripe | | stripe | | stripe | | stripe | stripe
c | unit | | unit | | unit | | unit | | unit | 1048577
t | 5242885 | | 5242886 | | 5242887 | | 5242888 | | 5242889 |
 |---------| |---------| |---------| |---------| |---------|
s | . | | . | | . | | . | | . |
e
t | . | | . | | . | | . | | . |
 |---------| |---------| |---------| |---------| |---------|
1 | stripe | | stripe | | stripe | | stripe | | stripe | stripe
 | unit | | unit | | unit | | unit | | unit | 2097151
 | 10485755| | 10485756| | 10485757| | 10485758| | 10485759|
 \=========/ \=========/ \=========/ \=========/ \=========/

 _________ _________ _________ _________ _________
 /object 10\ /object 11\ /object 12\ /object 13\ /object 14\
 +=========+ +=========+ +=========+ +=========+ +=========+
 | stripe | | stripe | | stripe | | stripe | | stripe | stripe
o | unit | | unit | | unit | | unit | | unit | 2097152
b | 10485760| | 10485761| | 10485762| | 10485763| | 10485764|
j |---------| |---------| |---------| |---------| |---------|
e | stripe | | stripe | | stripe | | stripe | | stripe | stripe
c | unit | | unit | | unit | | unit | | unit | 2097153
t | 10485765| | 10485766| | 10485767| | 10485768| | 10485769|
 |---------| |---------| |---------| |---------| |---------|
s | . | | . | | . | | . | | . |
e
t | . | | . | | . | | . | | . |
 |---------| |---------| |---------| |---------| |---------|
2 | stripe | | stripe | | stripe | | stripe | | stripe | stripe
 | unit | | unit | | unit | | unit | | unit | 3051756
 | 15258780| | 15258781| | 15258782| | 15258783| | 15258784|
 |---------| |---------| |---------| |---------| |---------|
 | stripe | | stripe | | stripe | | stripe | | (partial| (partial
 | unit | | unit | | unit | | unit | | stripe | stripe
 | 15258785| | 15258786| | 15258787| | 15258788| | unit) | 3051757)
 \=========/ \=========/ \=========/ \=========/ \=========/

 © Copyright 2012, Inktank Storage, Inc..

man/8/ceph-conf.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

ceph-conf – ceph conf file tool

Synopsis

ceph-conf -c conffile –list-all-sections

ceph-conf -c conffile -L

ceph-conf -c conffile -l prefix

ceph-conf key -s section1 ...

ceph-conf [-s section] –lookup key

ceph-conf [-s section] key

Description

ceph-conf is a utility for getting information about a ceph
configuration file. As with most Ceph programs, you can specify which
Ceph configuration file to use with the -c flag.

Actions

ceph-conf will perform one of the following actions:

–list-all-sections or -L prints out a list of all the section names in the configuration
file.

–list-sections or -l prints out a list of all the sections that begin
with a given prefix. For example, –list-sections mon would list all
sections beginning with mon.

–lookup will search the configuration for a given value. By default, the sections that
are searched are determined by the Ceph name that we are using. The Ceph name defaults to
client.admin. It can be specified with –name.

For example, if we specify –name osd.0, the following sections will be searched:
[osd.0], [osd], [global]

You can specify additional sections to search with –section or -s. These additional
sections will be searched before the sections that would normally be searched. As always,
the first matching entry we find will be returned.

Note: –lookup is the default action. If no other actions are given on the command line,
we will default to doing a lookup.

Examples

To find out what value osd 0 will use for the “osd data” option:

ceph-conf -c foo.conf --name osd.0 --lookup "osd data"

To find out what value will mds a use for the “log file” option:

ceph-conf -c foo.conf --name mds.a "log file"

To list all sections that begin with osd:

ceph-conf -c foo.conf -l osd

To list all sections:

ceph-conf -c foo.conf -L

Availability

ceph-conf is part of the Ceph distributed file system. Please refer
to the Ceph documentation at http://ceph.com/docs for more
information.

See also

ceph(8),
mkcephfs(8)

 © Copyright 2012, Inktank Storage, Inc..

init/start-cluster.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operating a Cluster »

Starting a Cluster

To start your Ceph cluster, execute the ceph with the start command.
The usage may differ based upon your Linux distribution. For example, for most
newer Debian/Ubuntu distributions, you may use the following syntax:

sudo service ceph start [options] [start|restart] [daemonType|daemonID]

For older distributions, you may wish to use the /etc/init.d/ceph path:

sudo /etc/init.d/ceph [options] [start|restart] [daemonType|daemonID]

The following examples illustrates a typical use case:

sudo service ceph -a start
sudo /etc/init.d/ceph -a start

Once you execute with -a, Ceph should begin operating. You may also specify
a particular daemon instance to constrain the command to a single instance. For
example:

sudo /etc/init.d/ceph start osd.0

 © Copyright 2012, Inktank Storage, Inc..

rec/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

Recommendations

There are several ways to set up a storage system. Often, the nature
of the load means different tradeoffs make sense for different
installations. This section aims to walk through some common
scenarios, and inform you on how to decide what is best for your
cluster.

		Hardware

		Filesystem

		Data placement

		Disabling cryptography

 © Copyright 2012, Inktank Storage, Inc..

radosgw/s3/csharp.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		RADOS S3 API »

C# S3 Examples

Creating a Connection

This creates a connection so that you can interact with the server.

using System;
using Amazon;
using Amazon.S3;
using Amazon.S3.Model;

string accessKey = "put your access key here!";
string secretKey = "put your secret key here!";

AmazonS3Config config = new AmazonS3Config();
config.ServiceURL = "objects.dreamhost.com";

AmazonS3 client = Amazon.AWSClientFactory.CreateAmazonS3Client(
 accessKey,
 secretKey,
 config
);

Listing Owned Buckets

This gets a list of Buckets that you own.
This also prints out the bucket name and creation date of each bucket.

ListBucketResponse response = client.ListBuckets();
foreach (S3Bucket b in response.Buckets)
{
 Console.WriteLine("{0}\t{1}", b.BucketName, b.CreationDate);
}

The output will look something like this:

mahbuckat1 2011-04-21T18:05:39.000Z
mahbuckat2 2011-04-21T18:05:48.000Z
mahbuckat3 2011-04-21T18:07:18.000Z

Creating a Bucket

This creates a new bucket called my-new-bucket

PutBucketRequest request = new PutBucketRequest();
request.BucketName = "my-new-bucket";
client.PutBucket(request);

Listing a Bucket’s Content

This gets a list of objects in the bucket.
This also prints out each object’s name, the file size, and last
modified date.

ListObjectsRequest request = new ListObjectsRequest();
request.BucketName = "my-new-bucket";
ListObjectsResponse response = client.ListObjects(request);
foreach (S3Object o in response.S3Objects)
{
 Console.WriteLine("{0}\t{1}\t{2}", o.Key, o.Size, o.LastModified);
}

The output will look something like this:

myphoto1.jpg 251262 2011-08-08T21:35:48.000Z
myphoto2.jpg 262518 2011-08-08T21:38:01.000Z

Deleting a Bucket

Note

The Bucket must be empty! Otherwise it won’t work!

DeleteBucketRequest request = new DeleteBucketRequest();
request.BucketName = "my-new-bucket";
client.DeleteBucket(request);

Forced Delete for Non-empty Buckets

Attention

not available

Creating an Object

This creates a file hello.txt with the string "Hello World!"

PutObjectRequest request = new PutObjectRequest();
request.Bucket = "my-new-bucket";
request.Key = "hello.txt";
request.ContentType = "text/plain";
request.ContentBody = "Hello World!";
client.PutObject(request);

Change an Object’s ACL

This makes the object hello.txt to be publicly readable, and
secret_plans.txt to be private.

SetACLRequest request = new SetACLRequest();
request.BucketName = "my-new-bucket";
request.Key = "hello.txt";
request.CannedACL = S3CannedACL.PublicRead;
client.SetACL(request);

SetACLRequest request2 = new SetACLRequest();
request2.BucketName = "my-new-bucket";
request2.Key = "secret_plans.txt";
request2.CannedACL = S3CannedACL.Private;
client.SetACL(request2);

Download an Object (to a file)

This downloads the object perl_poetry.pdf and saves it in
C:\Users\larry\Documents

GetObjectRequest request = new GetObjectRequest();
request.BucketName = "my-new-bucket";
request.Key = "perl_poetry.pdf"
GetObjectResponse response = client.GetObject(request);
response.WriteResponseStreamToFile("C:\\Users\\larry\\Documents\\perl_poetry.pdf");

Delete an Object

This deletes the object goodbye.txt

DeleteObjectRequest request = new DeleteObjectRequest();
request.BucketName = "my-new-bucket";
request.Key = "goodbye.txt";
client.DeleteObject(request);

Generate Object Download URLs (signed and unsigned)

This generates an unsigned download URL for hello.txt. This works
because we made hello.txt public by setting the ACL above.
This then generates a signed download URL for secret_plans.txt that
will work for 1 hour. Signed download URLs will work for the time
period even if the object is private (when the time period is up, the
URL will stop working).

Note

The C# S3 Library does not have a method for generating unsigned
URLs, so the following example only shows generating signed URLs.

GetPreSignedUrlRequest request = new GetPreSignedUrlRequest();
request.BucketName = "my-bucket-name";
request.Key = "secret_plans.txt";
request.Expires = DateTime.Now.AddHours(1);
request.Protocol = Protocol.HTTP;
string url = client.GetPreSignedURL(request);
Console.WriteLine(url);

The output of this will look something like:

http://objects.dreamhost.com/my-bucket-name/secret_plans.txt?Signature=XXXXXXXXXXXXXXXXXXXXXXXXXXX&Expires=1316027075&AWSAccessKeyId=XXXXXXXXXXXXXXXXXXX

 © Copyright 2012, Inktank Storage, Inc..

start/manual-install.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Getting Started »

Installing Ceph Manually

Ceph is intended for large-scale deployments, but you may install Ceph on a
single host. This guide is intended for Debian/Ubuntu Linux distributions.

		Install Ceph packages

		Create a ceph.conf file.
See Ceph Configuration Files for details.

		Deploy the Ceph configuration.
See Deploy with mkcephfs for details.

		Start a Ceph cluster.
See Starting a Cluster for details.

		Mount Ceph FS.
See Ceph FS for details.

 © Copyright 2012, Inktank Storage, Inc..

source/building-ceph.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Ceph Source Code »

Building Ceph

Ceph provides build scripts for source code and for documentation.

Building Ceph

Ceph provides automake and configure scripts to streamline the build
process. To build Ceph, navigate to your cloned Ceph repository and execute the
following:

cd ceph
./autogen.sh
./configure
make

You can use make -j to execute multiple jobs depending upon your system. For
example:

make -j4

To install Ceph locally, you may also use:

sudo make install

If you install Ceph locally, make will place the executables in
usr/local/bin. You may add the ceph.conf file to the usr/local/bin
directory to run an evaluation environment of Ceph from a single directory.

Building Ceph Documentation

Ceph utilizes Python’s Sphinx documentation tool. For details on the Sphinx
documentation tool, refer to: Sphinx [http://sphinx.pocoo.org]. To build the Ceph documentaiton,
navigate to the Ceph repository and execute the build script:

cd ceph
admin/build-doc

Once you build the documentation set, you may navigate to the source directory to view it:

cd build-doc/output

There should be an /html directory and a /man directory containing
documentation in HTML and manpage formats respectively.

 © Copyright 2012, Inktank Storage, Inc..

cephfs/kernel.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Ceph FS »

Mount Ceph FS with the Kernel Driver

To mount the Ceph file system you may use the mount command if you know the
monitor host IP address(es), or use the mount.ceph utility to resolve the
monitor host name(s) into IP address(es) for you. For example:

sudo mkdir /mnt/mycephfs
sudo mount -t ceph 192.168.0.1:6789:/ /mnt/mycephfs

To mount the Ceph file system with cephx authentication enabled, you must
specify a user name and a secret.

sudo mount -t ceph 192.168.0.1:6789:/ /mnt/mycephfs -o name=admin,secret=AQATSKdNGBnwLhAAnNDKnH65FmVKpXZJVasUeQ==

The foregoing usage leaves the secret in the Bash history. A more secure
approach reads the secret from a file. For example:

sudo mount -t ceph 192.168.0.1:6789:/ /mnt/mycephfs -o name=admin,secretfile=/etc/ceph/admin.secret

See Authentication for details on cephx.

To unmount the Ceph file system, you may use the umount command. For example:

sudo umount /mnt/mycephfs

Tip

Ensure that you are not within the file system directories before
executing this command.

See mount.ceph for details.

 © Copyright 2012, Inktank Storage, Inc..

rbd/rbd-ko.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Block Devices »

RBD Kernel Object Operations

Important

To use kernel object operations, you must have a running Ceph cluster.

Load the Ceph RBD Module

To map an RBD image to a kernel object, first load the Ceph RBD module:

modprobe rbd

Get a List of RBD Images

To mount an RBD image, first return a list of the images.

rbd list

Map a Block Device with rbd

Use rbd to map an image name to a kernel object. You must specify the
image name, the pool name, and the client name. If you use cephx
authentication, you must also specify a secret.

sudo rbd map {image-name} --pool {pool-name} --name {client-name} --secret {client-secret}

For example:

sudo rbd map foo --pool rbd --name client.admin

If you use cephx authentication, you must also specify a secret.

echo "10.20.30.40 name=admin,secret=/path/to/secret rbd foo" | sudo tee /sys/bus/rbd/add

Map a Block Device with add

To map an RBD image to a kernel object directly, enter the IP address of
the monitor, the user name, and the RBD image name as follows:

echo "{mon-ip-address} name={user-name} rbd {image-name}" | sudo tee /sys/bus/rbd/add

For example:

echo "10.20.30.40 name=admin rbd foo" | sudo tee /sys/bus/rbd/add

If you use cephx authentication, you must also specify a secret.

echo "10.20.30.40 name=admin,secret=/path/to/secret rbd foo" | sudo tee /sys/bus/rbd/add

A kernel block device resides under the /sys/bus/rbd/devices directory and
provides the following functions:

		Function
		Description

		client_id
		Returns the client ID of the given device ID.

		create_snap
		Creates a snap from a snap name and a device ID.

		current_snap
		Returns the most recent snap for the given device ID.

		major
		

		name
		Returns the RBD image name of the device ID.

		pool
		Returns the pool source of the device ID.

		refresh
		Refreshes the given device with the SDs.

		size
		Returns the size of the device.

		uevent
		

Show Mapped Block Devices

To show RBD images mapped to kernel block devices with the rbd command,
specify the showmapped option.

sudo rbd showmapped

Images are mounted as devices sequentially starting from 0. To list all
devices mapped to kernel objects, execute the following:

ls /sys/bus/rbd/devices

Unmapping a Block Device

To unmap an RBD image with the rbd command, specify the rm option
and the device name (i.e., by convention the same as the RBD image name).

sudo rbd unmap /dev/rbd/{poolname}/{imagename}

For example:

sudo rbd unmap /dev/rbd/rbd/foo

To unmap an RBD image from a kernel object, specify its index and use tee
to call remove as follows, but replace {device-number} with the number
of the device you want to remove:

echo {device-number} | sudo tee /sys/bus/rbd/remove

 © Copyright 2012, Inktank Storage, Inc..

dev/object-store.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

Object Store Architecture Overview

[image: /*
 * Rough outline of object store module dependencies
 */

digraph object_store {
 size="7,7";
 node [color=lightblue2, style=filled, fontname="Serif"];

 "testrados" -> "librados"
 "testradospp" -> "librados"

 "rbd" -> "librados"

 "radostool" -> "librados"

 "radosgw-admin" -> "radosgw"

 "radosgw" -> "librados"

 "radosacl" -> "librados"

 "librados" -> "objecter"

 "ObjectCacher" -> "Filer"

 "dumpjournal" -> "Journaler"

 "Journaler" -> "Filer"

 "SyntheticClient" -> "Filer"
 "SyntheticClient" -> "objecter"

 "Filer" -> "objecter"

 "objecter" -> "OSDMap"

 "ceph-osd" -> "PG"
 "ceph-osd" -> "ObjectStore"

 "crushtool" -> "CrushWrapper"

 "OSDMap" -> "CrushWrapper"

 "OSDMapTool" -> "OSDMap"

 "PG" -> "ReplicatedPG"
 "PG" -> "ObjectStore"
 "PG" -> "OSDMap"

 "ReplicatedPG" -> "ObjectStore"
 "ReplicatedPG" -> "OSDMap"

 "ObjectStore" -> "FileStore"

 "FileStore" -> "ext3"
 "FileStore" -> "ext4"
 "FileStore" -> "btrfs"
}]

Todo

write more here

 © Copyright 2012, Inktank Storage, Inc..

dev/documenting.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

Documenting Ceph

Code Documentation

C and C++ can be documented with Doxygen [http://www.stack.nl/~dimitri/doxygen/], using the subset of Doxygen
markup supported by Asphyxiate [https://github.com/ceph/asphyxiate].

The general format for function documentation is:

/**
 * Short description
 *
 * Detailed description when necessary
 *
 * preconditons, postconditions, warnings, bugs or other notes
 *
 * parameter reference
 * return value (if non-void)
 */

This should be in the header where the function is declared, and
functions should be grouped into logical categories. The librados C
API [https://github.com/ceph/ceph/blob/master/src/include/rados/librados.h] provides a complete example. It is pulled into Sphinx by
librados.rst [https://raw.github.com/ceph/ceph/master/doc/api/librados.rst], which is rendered at Librados (C).

Drawing diagrams

Graphviz

You can use Graphviz [http://graphviz.org/], as explained in the Graphviz extension documentation [http://sphinx.pocoo.org/ext/graphviz.html].

[image: digraph "example" {
 foo -> bar;
 bar -> baz;
 bar -> thud;
}]

Most of the time, you’ll want to put the actual DOT source in a
separate file, like this:

.. graphviz:: myfile.dot

Ditaa

You can use Ditaa [http://ditaa.sourceforge.net/]:

[image:]

Blockdiag

If a use arises, we can integrate Blockdiag [http://blockdiag.com/]. It is a Graphviz-style
declarative language for drawing things, and includes:

		block diagrams [http://blockdiag.com/en/blockdiag/]: boxes and arrows (automatic layout, as opposed to
Ditaa [http://ditaa.sourceforge.net/])

		sequence diagrams [http://blockdiag.com/en/seqdiag/index.html]: timelines and messages between them

		activity diagrams [http://blockdiag.com/en/actdiag/index.html]: subsystems and activities in them

		network diagrams [http://blockdiag.com/en/nwdiag/]: hosts, LANs, IP addresses etc (with Cisco
icons [http://pypi.python.org/pypi/blockdiagcontrib-cisco/] if wanted)

Inkscape

You can use Inkscape to generate scalable vector graphics.
http://inkscape.org for restructedText documents.

If you generate diagrams with Inkscape, you should
commit both the Scalable Vector Graphics (SVG) file and export a
Portable Network Graphic (PNG) file. Reference the PNG file.

By committing the SVG file, others will be able to update the
SVG diagrams using Inkscape.

HTML5 will support SVG inline.

 © Copyright 2012, Inktank Storage, Inc..

radosgw/s3/python.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		RADOS S3 API »

Python S3 Examples

Creating a Connection

This creates a connection so that you can interact with the server.

import boto
import boto.s3.connection
access_key = 'put your access key here!'
secret_key = 'put your secret key here!'

conn = boto.connect_s3(
 aws_access_key_id = access_key,
 aws_secret_access_key = secret_key,
 host = 'objects.dreamhost.com',
 calling_format = boto.s3.connection.OrdinaryCallingFormat(),
)

Listing Owned Buckets

This gets a list of Buckets that you own.
This also prints out the bucket name and creation date of each bucket.

for bucket in conn.get_all_buckets():
print "{name}\t{created}".format(
 name = bucket.name,
 created = bucket.creation_date,
)

The output will look something like this:

mahbuckat1 2011-04-21T18:05:39.000Z
mahbuckat2 2011-04-21T18:05:48.000Z
mahbuckat3 2011-04-21T18:07:18.000Z

Creating a Bucket

This creates a new bucket called my-new-bucket

bucket = conn.create_bucket('my-new-bucket')

Listing a Bucket’s Content

This gets a list of objects in the bucket.
This also prints out each object’s name, the file size, and last
modified date.

for key in bucket.list():
 print "{name}\t{size}\t{modified}".format(
 name = key.name,
 size = key.size,
 modified = key.last_modified,
)

The output will look something like this:

myphoto1.jpg 251262 2011-08-08T21:35:48.000Z
myphoto2.jpg 262518 2011-08-08T21:38:01.000Z

Deleting a Bucket

Note

The Bucket must be empty! Otherwise it won’t work!

conn.delete_bucket(bucket.name)

Forced Delete for Non-empty Buckets

Attention

not available in python

Creating an Object

This creates a file hello.txt with the string "Hello World!"

key = bucket.new_key('hello.txt')
key.set_contents_from_string('Hello World!')

Change an Object’s ACL

This makes the object hello.txt to be publicly readable, and
secret_plans.txt to be private.

hello_key = bucket.get_key('hello.txt')
hello_key.set_canned_acl('public-read')
plans_key = bucket.get_key('secret_plans.txt')
plans_key.set_canned_acl('private')

Download an Object (to a file)

This downloads the object perl_poetry.pdf and saves it in
/home/larry/documents/

key = bucket.get_key('perl_poetry.pdf')
key.get_contents_to_filename('/home/larry/documents/perl_poetry.pdf')

Delete an Object

This deletes the object goodbye.txt

bucket.delete_key('goodbye.txt')

Generate Object Download URLs (signed and unsigned)

This generates an unsigned download URL for hello.txt. This works
because we made hello.txt public by setting the ACL above.
This then generates a signed download URL for secret_plans.txt that
will work for 1 hour. Signed download URLs will work for the time
period even if the object is private (when the time period is up, the
URL will stop working).

hello_key = bucket.get_key('hello.txt')
hello_url = hello_key.generate_url(0, query_auth=False, force_http=True)
print hello_url

plans_key = bucket.get_key('secret_plans.txt')
plans_url = plans_key.generate_url(3600, query_auth=True, force_http=True)
print plans_url

The output of this will look something like:

http://objects.dreamhost.com/my-bucket-name/hello.txt
http://objects.dreamhost.com/my-bucket-name/secret_plans.txt?Signature=XXXXXXXXXXXXXXXXXXXXXXXXXXX&Expires=1316027075&AWSAccessKeyId=XXXXXXXXXXXXXXXXXXX

 © Copyright 2012, Inktank Storage, Inc..

radosgw/swift/objectops.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		Swift-compatible API »

Object Operations

An object is a container for storing data and metadata. A container may
have many objects, but the object names must be unique. This API enables a
client to create an object, set access controls and metadata, retrieve an
object’s data and metadata, and delete an object. Since this API makes requests
related to information in a particular user’s account, all requests in this API
must be authenticated unless the container or object’s access control is
deliberately made publicly accessible (i.e., allows anonymous requests).

Create/Update an Object

To create a new object, make a PUT request with the API version, account,
container name and the name of the new object. You must have write permission
on the container to create or update an object. The object name must be
unique within the container. The PUT request is not idempotent, so if you
do not use a unique name, the request will update the object. However, you may
use pseudo-hierarchical syntax in your object name to distinguish it from
another object of the same name if it is under a different pseudo-hierarchical
directory. You may include access control headers and metadata headers in the
request.

Syntax

PUT /{api version}/{account}/{container}/{object} HTTP/1.1
 Host: {fqdn}
 X-Auth-Token: {auth-token}

Request Headers

ETag

		Description:		An MD5 hash of the object’s contents. Recommended.

		Type:		String

		Required:		No

Content-Type

		Description:		The type of content the object contains.

		Type:		String

		Required:		No

Transfer-Encoding

		Description:		Indicates whether the object is part of a larger aggregate object.

		Type:		String

		Valid Values:		chunked

		Required:		No

Copy an Object

Copying an object allows you to make a server-side copy of an object, so that
you don’t have to download it and upload it under another container/name.
To copy the contents of one object to another object, you may make either a
PUT request or a COPY request with the API version, account, and the
container name. For a PUT request, use the destination container and object
name in the request, and the source container and object in the request header.
For a Copy request, use the source container and object in the request, and
the destination container and object in the request header. You must have write
permission on the container to copy an object. The destination object name must be
unique within the container. The request is not idempotent, so if you do not use
a unique name, the request will update the destination object. However, you may
use pseudo-hierarchical syntax in your object name to distinguish the destination
object from the source object of the same name if it is under a different
pseudo-hierarchical directory. You may include access control headers and metadata
headers in the request.

Syntax

PUT /{api version}/{account}/{dest-container}/{dest-object} HTTP/1.1
X-Copy-From: {source-container}/{source-object}
Host: {fqdn}
X-Auth-Token: {auth-token}

or alternatively:

COPY /{api version}/{account}/{source-container}/{source-object} HTTP/1.1
Destination: {dest-container}/{dest-object}

Request Headers

X-Copy-From

		Description:		Used with a PUT request to define the source container/object path.

		Type:		String

		Required:		Yes, if using PUT

Destination

		Description:		Used with a COPY request to define the destination container/object path.

		Type:		String

		Required:		Yes, if using COPY

If-Modified-Since

		Description:		Only copies if modified since the date/time of the source object’s last_modified attribute.

		Type:		Date

		Required:		No

If-Unmodified-Since

		Description:		Only copies if not modified since the date/time of the source object’s last_modified attribute.

		Type:		Date

		Required:		No

Copy-If-Match

		Description:		Copies only if the ETag in the request matches the source object’s ETag.

		Type:		ETag.

		Required:		No

Copy-If-None-Match

		Description:		Copies only if the ETag in the request does not match the source object’s ETag.

		Type:		ETag.

		Required:		No

Delete an Object

To delete an object, make a DELETE request with the API version, account,
container and object name. You must have write permissions on the container to delete
an object within it. Once you’ve successfully deleted the object, you’ll be able to
reuse the object name.

Syntax

DELETE /{api version}/{account}/{container}/{object} HTTP/1.1
Host: {fqdn}
X-Auth-Token: {auth-token}

Get an Object

To retrieve an object, make a GET request with the API version, account,
container and object name. You must have read permissions on the container to
retrieve an object within it.

Syntax

GET /{api version}/{account}/{container}/{object} HTTP/1.1
Host: {fqdn}
X-Auth-Token: {auth-token}

Request Headers

range

		Description:		To retrieve a subset of an object’s contents, you may specify a byte range.

		Type:		Date

		Required:		No

If-Modified-Since

		Description:		Only copies if modified since the date/time of the source object’s last_modified attribute.

		Type:		Date

		Required:		No

If-Unmodified-Since

		Description:		Only copies if not modified since the date/time of the source object’s last_modified attribute.

		Type:		Date

		Required:		No

Copy-If-Match

		Description:		Copies only if the ETag in the request matches the source object’s ETag.

		Type:		ETag.

		Required:		No

Copy-If-None-Match

		Description:		Copies only if the ETag in the request does not match the source object’s ETag.

		Type:		ETag.

		Required:		No

Response Headers

Content-Range

		Description:		The range of the subset of object contents. Returned only if the range header field was specified in the request

Get Object Metadata

To retrieve an object’s metadata, make a HEAD request with the API version,
account, container and object name. You must have read permissions on the
container to retrieve metadata from an object within the container. This request
returns the same header information as the request for the object itself, but
it does not return the object’s data.

Syntax

HEAD /{api version}/{account}/{container}/{object} HTTP/1.1
Host: {fqdn}
X-Auth-Token: {auth-token}

Add/Update Object Metadata

To add metadata to an object, make a POST request with the API version,
account, container and object name. You must have write permissions on the
parent container to add or update metadata.

Syntax

POST /{api version}/{account}/{container}/{object} HTTP/1.1
Host: {fqdn}
X-Auth-Token: {auth-token}

Request Headers

X-Container-Meta-{key}

		Description:		A user-defined meta data key that takes an arbitrary string value.

		Type:		String

		Required:		No

 © Copyright 2012, Inktank Storage, Inc..

rec/filesystem.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Recommendations »

Filesystem

For details on file systems when configuring a cluster See
Hard Disk and File System Recommendations .

Tip

We recommend configuring Ceph to use the XFS file system in
the near term, and btrfs in the long term once it is stable
enough for production.

Before ext3, ReiserFS was the only journaling file system available for
Linux. However, ext3 doesn’t provide Extended Attribute (XATTR) support.
While ext4 provides XATTR support, it only allows XATTRs up to 4kb. The
4kb limit is not enough for RADOS GW ACLs, snapshots, and other features. As of
version 0.45, Ceph provides a leveldb feature for ext4 file systems
that stores XATTRs in excess of 4kb in a leveldb database.

The XFS and btrfs file systems provide numerous advantages in highly
scaled data storage environments when compared [http://en.wikipedia.org/wiki/Comparison_of_file_systems] to ext3 and ext4.
Both XFS and btrfs are journaling file systems [http://en.wikipedia.org/wiki/Journaling_file_system], which means that
they are more robust when recovering from crashes, power outages, etc. These
filesystems journal all of the changes they will make before performing writes.

XFS was developed for Silicon Graphics, and is a mature and stable
filesystem. By contrast, btrfs is a relatively new file system that aims
to address the long-standing wishes of system administrators working with
large scale data storage environments. btrfs has some unique features
and advantages compared to other Linux filesystems.

btrfs is a copy-on-write [http://en.wikipedia.org/wiki/Copy-on-write] filesystem. It supports file creation
timestamps and checksums that verify metadata integrity, so it can detect
bad copies of data and fix them with the good copies. The copy-on-write
capability means that btrfs can support snapshots that are writable.
btrfs supports transparent compression and other features.

btrfs also incorporates multi-device management into the file system,
which enables you to support heterogeneous disk storage infrastructure,
data allocation policies. The community also aims to provide fsck,
deduplication, and data encryption support in the future. This compelling
list of features makes btrfs the ideal choice for Ceph clusters.

 © Copyright 2012, Inktank Storage, Inc..

man/8/ceph-osd.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

ceph-osd – ceph object storage daemon

Synopsis

ceph-osd -i osdnum [–osd-data datapath] [–osd-journal
journal] [–mkfs] [–mkjournal] [–mkkey]

Description

ceph-osd is the object storage daemon for the Ceph distributed file
system. It is responsible for storing objects on a local file system
and providing access to them over the network.

The datapath argument should be a directory on a btrfs file system
where the object data resides. The journal is optional, and is only
useful performance-wise when it resides on a different disk than
datapath with low latency (ideally, an NVRAM device).

Options

		
-f, --foreground

		Foreground: do not daemonize after startup (run in foreground). Do
not generate a pid file. Useful when run via ceph-run(8).

		
-d

		Debug mode: like -f, but also send all log output to stderr.

		
--osd-data osddata

		Use object store at osddata.

		
--osd-journal journal

		Journal updates to journal.

		
--mkfs

		Create an empty object repository. Normally invoked by
mkcephfs(8). This also initializes the journal
(if one is defined).

		
--mkkey

		Generate a new secret key. This is normally used in combination
with --mkfs as it is more convenient than generating a key by
hand with ceph-authtool(8).

		
--mkjournal

		Create a new journal file to match an existing object repository.
This is useful if the journal device or file is wiped out due to a
disk or file system failure.

		
--flush-journal

		Flush the journal to permanent store. This runs in the foreground
so you know when it’s completed. This can be useful if you want to
resize the journal or need to otherwise destroy it: this guarantees
you won’t lose data.

		
--get-cluster-fsid

		Print the cluster fsid (uuid) and exit.

		
--get-osd-fsid

		Print the OSD’s fsid and exit. The OSD’s uuid is generated at
–mkfs time and is thus unique to a particular instantiation of
this OSD.

		
--get-journal-fsid

		Print the journal’s uuid. The journal fsid is set to match the OSD
fsid at –mkfs time.

		
-c ceph.conf, --conf=ceph.conf

		Use ceph.conf configuration file instead of the default
/etc/ceph/ceph.conf for runtime configuration options.

		
-m monaddress[:port]

		Connect to specified monitor (instead of looking through
ceph.conf).

Availability

ceph-osd is part of the Ceph distributed file system. Please refer to
the Ceph documentation at http://ceph.com/docs for more information.

See also

ceph(8),
ceph-mds(8),
ceph-mon(8),
ceph-authtool(8)

 © Copyright 2012, Inktank Storage, Inc..

appendix/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

Appendices

		1. Differences from POSIX

 © Copyright 2012, Inktank Storage, Inc..

_static/down.png

start/get-involved.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Getting Started »

Get Involved in the Ceph Community!

These are exciting times in the Ceph community! Get involved!

		Channel
		Description
		Contact Info

		Blog
		Check the Ceph Blog [http://ceph.com/community/blog/] periodically to keep track
of Ceph progress and important announcements.
		http://ceph.com/community/blog/

		IRC
		As you delve into Ceph, you may have questions
or feedback for the Ceph development team. Ceph
developers are often available on the #ceph
IRC channel particularly during daytime hours
in the US Pacific Standard Time zone.
		
		Domain: irc.oftc.net

		Channel: #ceph

		Email List
		Keep in touch with developer activity by
subscribing to the email list at
ceph-devel@vger.kernel.org. You can opt out of
the email list at any time by unsubscribing.
A simple email is all it takes! If you would
like to view the archives, go to Gmane [http://news.gmane.org/gmane.comp.file-systems.ceph.devel].
		
		Subscribe

		Unsubscribe

		Gmane [http://news.gmane.org/gmane.comp.file-systems.ceph.devel]

		Bug Tracker
		You can help keep Ceph production worthy by
filing and tracking bugs, and providing feature
requests using the Bug Tracker [http://tracker.newdream.net/projects/ceph].
		http://tracker.newdream.net/projects/ceph

		Source Code
		If you would like to participate in
development, bug fixing, or if you just want
the very latest code for Ceph, you can get it
at http://github.com. See Ceph Source Code
for details on cloning from github.
		
		http://github.com:ceph/ceph

		http://ceph.com/download

		Support
		If you have a very specific problem, an
immediate need, or if your deployment requires
significant help, consider commercial support [http://inktank.com].
		http://inktank.com

 © Copyright 2012, Inktank Storage, Inc..

ops/manage/grow/osd.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operations »

 		Managing a Ceph cluster »

 		Growing or shrinking a Ceph cluster »

Resizing the RADOS cluster

Adding a new OSD to the cluster

Briefly...

		Allocate a new OSD id:

$ ceph osd create
123

		Make sure ceph.conf is valid for the new OSD.

		Initialize osd data directory:

$ ceph-osd -i 123 --mkfs --mkkey

		Register the OSD authentication key:

$ ceph auth add osd.123 osd 'allow *' mon 'allow rwx' -i /var/lib/ceph/osd-data/123/keyring

		Adjust the CRUSH map to allocate data to the new device (see Adjusting the CRUSH map).

Removing OSDs

Briefly...

		Stop the daemon

		Remove it from the CRUSH map:

$ ceph osd crush remove osd.123

		Remove it from the osd map:

$ ceph osd rm 123

See also Recovering from failures.

 © Copyright 2012, Inktank Storage, Inc..

rec/hardware.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Recommendations »

Hardware

See Hardware Recommendations for details.

 © Copyright 2012, Inktank Storage, Inc..

source/build-packages.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Ceph Source Code »

Build Ceph Packages

To build packages, you must clone the Ceph repository. You can create
installation packages from the latest code using dpkg-buildpackage for
Debian/Ubuntu or rpmbuild for the RPM Package Manager.

Tip

When building on a multi-core CPU, use the -j and the number of
cores * 2. For example, use -j4 for a dual-core processor to accelerate
the build.

Advanced Package Tool (APT)

To create .deb packages for Debian/Ubuntu, ensure that you have cloned the
Ceph repository, installed the build prerequisites and installed
debhelper:

sudo apt-get install debhelper

Once you have installed debhelper, you can build the packages:

sudo dpkg-buildpackage

For multi-processor CPUs use the -j option to accelerate the build.

RPM Package Manager

To create .rpm packages, ensure that you have cloned the Ceph repository,
installed the build prerequisites and installed rpm-build and
rpmdevtools:

yum install rpm-build rpmdevtools

Once you have installed the tools, setup an RPM compilation environment:

rpmdev-setuptree

Fetch the source tarball for the RPM compilation environment:

wget -P ~/rpmbuild/SOURCES/ http://ceph.com/download/ceph-<version>.tar.gz

Build the RPM packages:

rpmbuild -tb ~/rpmbuild/SOURCES/ceph-<version>.tar.gz

For multi-processor CPUs use the -j option to accelerate the build.

 © Copyright 2012, Inktank Storage, Inc..

man/8/rados.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

rados – rados object storage utility

Synopsis

rados [-m monaddr] [mkpool | rmpool foo] [-p | –pool
pool] [-s | –snap snap] [-i infile] [-o outfile]
command ...

Description

rados is a utility for interacting with a Ceph object storage
cluster (RADOS), part of the Ceph distributed file system.

Options

		
-p pool, --pool pool

		Interact with the given pool. Required by most commands.

		
-s snap, --snap snap

		Read from the given pool snapshot. Valid for all pool-specific read operations.

		
-i infile

		will specify an input file to be passed along as a payload with the
command to the monitor cluster. This is only used for specific
monitor commands.

		
-o outfile

		will write any payload returned by the monitor cluster with its
reply to outfile. Only specific monitor commands (e.g. osd getmap)
return a payload.

		
-c ceph.conf, --conf=ceph.conf

		Use ceph.conf configuration file instead of the default
/etc/ceph/ceph.conf to determine monitor addresses during startup.

		
-m monaddress[:port]

		Connect to specified monitor (instead of looking through ceph.conf).

Global commands

		lspools

		List object pools

		df

		Show utilization statistics, including disk usage (bytes) and object
counts, over the entire system and broken down by pool.

		mkpool foo

		Create a pool with name foo.

		rmpool foo

		Delete the pool foo (and all its data)

Pool specific commands

		get name outfile

		Read object name from the cluster and write it to outfile.

		put name infile

		Write object name to the cluster with contents from infile.

		rm name

		Remove object name.

		ls outfile

		List objects in given pool and write to outfile.

		lssnap

		List snapshots for given pool.

		mksnap foo

		Create pool snapshot named foo.

		rmsnap foo

		Remove pool snapshot names foo.

		bench seconds mode [-b objsize] [-t threads]

		Benchmark for seconds. The mode can be write or read. The default
object size is 4 KB, and the default number of simulated threads
(parallel writes) is 16.

		listomapkeys name

		List all the keys stored in the object map of object name.

		listomapvals name

		List all key/value pairs stored in the object map of object name.
The values are dumped in hexadecimal.

		getomapval name key

		Dump the hexadecimal value of key in the object map of object name.

		setomapval name key value

		Set the value of key in the object map of object name.

		rmomapkey name key

		Remove key from the object map of object name.

		getomapheader name

		Dump the hexadecimal value of the object map header of object name.

		setomapheader name value

		Set the value of the object map header of object name.

Examples

To view cluster utilization:

rados df

To get a list object in pool foo sent to stdout:

rados -p foo ls -

To write an object:

rados -p foo put myobject blah.txt

To create a snapshot:

rados -p foo mksnap mysnap

To delete the object:

rados -p foo rm myobject

To read a previously snapshotted version of an object:

rados -p foo -s mysnap get myobject blah.txt.old

Availability

rados is part of the Ceph distributed file system. Please refer to
the Ceph documentation at http://ceph.com/docs for more information.

See also

ceph(8)

 © Copyright 2012, Inktank Storage, Inc..

man/8/ceph-syn.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

ceph-syn – ceph synthetic workload generator

Synopsis

ceph-syn [-m monaddr:port] –syn command ...

Description

ceph-syn is a simple synthetic workload generator for the Ceph
distributed file system. It uses the userspace client library to
generate simple workloads against a currently running file system. The
file system need not be mounted via ceph-fuse(8) or the kernel client.

One or more --syn command arguments specify the particular
workload, as documented below.

Options

		
-d

		Detach from console and daemonize after startup.

		
-c ceph.conf, --conf=ceph.conf

		Use ceph.conf configuration file instead of the default
/etc/ceph/ceph.conf to determine monitor addresses during
startup.

		
-m monaddress[:port]

		Connect to specified monitor (instead of looking through
ceph.conf).

		
--num_client num

		Run num different clients, each in a separate thread.

		
--syn workloadspec

		Run the given workload. May be specified as many times as
needed. Workloads will normally run sequentially.

Workloads

Each workload should be preceded by --syn on the command
line. This is not a complete list.

		mknap path snapname

		Create a snapshot called snapname on path.

		rmsnap path snapname

		Delete snapshot called snapname on path.

		rmfile path

		Delete/unlink path.

		writefile sizeinmb blocksize

		Create a file, named after our client id, that is sizeinmb MB by
writing blocksize chunks.

		readfile sizeinmb blocksize

		Read file, named after our client id, that is sizeinmb MB by
writing blocksize chunks.

		rw sizeinmb blocksize

		Write file, then read it back, as above.

		makedirs numsubdirs numfiles depth

		Create a hierarchy of directories that is depth levels deep. Give
each directory numsubdirs subdirectories and numfiles files.

		walk

		Recursively walk the file system (like find).

Availability

ceph-syn is part of the Ceph distributed file system. Please refer to
the Ceph documentation at http://ceph.com/docs for more information.

See also

ceph(8),
ceph-fuse(8)

 © Copyright 2012, Inktank Storage, Inc..

dev/osd-class-path.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

OSD class path issues

2011-12-05 17:41:00.994075 7ffe8b5c3760 librbd: failed to assign a block name for image
create error: error 5: Input/output error

This usually happens because your osds can’t find cls_rbd.so. They
search for it in osd_class_dir, which may not be set correctly by
default (http://tracker.newdream.net/issues/1722).

Most likely it’s looking in /usr/lib/rados-classes instead of
/usr/lib64/rados-classes - change osd_class_dir in your
ceph.conf and restart the osds to fix it.

 © Copyright 2012, Inktank Storage, Inc..

cephfs/fuse.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Ceph FS »

Mount Ceph FS as a FUSE

To mount the Ceph file system as a File System in User Space (FUSE), you may
use the ceph-fuse command. For example:

sudo mkdir /home/usernname/cephfs
sudo ceph-fuse -m 192.168.0.1:6789 /home/username/cephfs

If cephx authentication is on, ceph-fuse will retrieve the name and
secret from the key ring automatically.

See ceph-fuse for details.

 © Copyright 2012, Inktank Storage, Inc..

dev/osd_internals/osd_overview.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

 		OSD developer documentation »

OSD

Concepts

		Messenger

		See src/msg/Messenger.h

Handles sending and receipt of messages on behalf of the OSD. The OSD uses
two messengers:

		cluster_messenger - handles traffic to other OSDs, monitors

		client_messenger - handles client traffic

This division allows the OSD to be configured with different interfaces for
client and cluster traffic.

		Dispatcher

		See src/msg/Dispatcher.h

OSD implements the Dispatcher interface. Of particular note is ms_dispatch,
which serves as the entry point for messages received via either the client
or cluster messenger. Because there are two messengers, ms_dispatch may be
called from at least two threads. The osd_lock is always held during
ms_dispatch.

		WorkQueue

		See src/common/WorkQueue.h

The WorkQueue class abstracts the process of queueing independent tasks
for asynchronous execution. Each OSD process contains workqueues for
distinct tasks:

		OpWQ: handles ops (from clients) and subops (from other OSDs).
Runs in the op_tp threadpool.

		PeeringWQ: handles peering tasks and pg map advancement
Runs in the op_tp threadpool.
See Peering

		CommandWQ: handles commands (pg query, etc)
Runs in the command_tp threadpool.

		RecoveryWQ: handles recovery tasks.
Runs in the recovery_tp threadpool.

		SnapTrimWQ: handles snap trimming
Runs in the disk_tp threadpool.
See SnapTrimmer

		ScrubWQ: handles primary scrub path
Runs in the disk_tp threadpool.
See Scrub

		ScrubFinalizeWQ: handles primary scrub finalize
Runs in the disk_tp threadpool.
See Scrub

		RepScrubWQ: handles replica scrub path
Runs in the disk_tp threadpool
See Scrub

		RemoveWQ: Asynchronously removes old pg directories
Runs in the disk_tp threadpool
See PGRemoval

		ThreadPool

		See src/common/WorkQueue.h
See also above.

There are 4 OSD threadpools:

		op_tp: handles ops and subops

		recovery_tp: handles recovery tasks

		disk_tp: handles disk intensive tasks

		command_tp: handles commands

		OSDMap

		See src/osd/OSDMap.h

The crush algorithm takes two inputs: a picture of the cluster
with status information about which nodes are up/down and in/out,
and the pgid to place. The former is encapsulated by the OSDMap.
Maps are numbered by epoch (epoch_t). These maps are passed around
within the OSD as std::tr1::shared_ptr<const OSDMap>.

See MapHandling

		PG

		See src/osd/PG.* src/osd/ReplicatedPG.*

Objects in rados are hashed into PGs and PGs are placed via crush onto
OSDs. The PG structure is responsible for handling requests pertaining to
a particular PG as well as for maintaining relevant metadata and controlling
recovery.

		OSDService

		See src/osd/OSD.cc OSDService

The OSDService acts as a broker between PG threads and OSD state which allows
PGs to perform actions using OSD services such as workqueues and messengers.
This is still a work in progress. Future cleanups will focus on moving such
state entirely from the OSD into the OSDService.

Overview

See src/ceph_osd.cc

The OSD process represents one leaf device in the crush hierarchy. There
might be one OSD process per physical machine, or more than one if, for
example, the user configures one OSD instance per disk.

 © Copyright 2012, Inktank Storage, Inc..

config-cluster/osd-config-ref.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Configuration »

 		Ceph Configuration Files »

OSD Config Reference

osd auto upgrade tmap

		Description:		Uses tmap for omap on old objects.

		Type:		Boolean

		Default:		True

osd tmapput sets users tmap

		Description:		Uses tmap for debugging only.

		Type:		Boolean

		Default:		False

osd data

		Description:		

		Type:		String

		Default:		None

osd journal

		Description:		

		Type:		String

		Default:		None

osd journal size

		Description:		The size of the journal in MBs.

		Type:		32-bit Int

		Default:		0

osd max write size

		Description:		The size of the maximum x to write in MBs.

		Type:		32-bit Int

		Default:		90

osd balance reads

		Description:		Load balance reads?

		Type:		Boolean

		Default:		False

osd shed reads

		Description:		Forward from primary to replica.

		Type:		32-bit Int

		Default:		False (0)

osd shed reads min latency

		Description:		The minimum local latency.

		Type:		Double

		Default:		.01

osd shed reads min latency diff

		Description:		Percentage difference from peer. 150% default.

		Type:		Double

		Default:		1.5

osd client message size cap

		Description:		Client data allowed in-memory. 500MB default.

		Type:		64-bit Int Unsigned

		Default:		500*1024L*1024L

osd stat refresh interval

		Description:		The status refresh interval in seconds.

		Type:		64-bit Int Unsigned

		Default:		.5

osd pg bits

		Description:		Placement group bits per OSD.

		Type:		32-bit Int

		Default:		6

osd pgp bits

		Description:		Placement group p bits per OSD?

		Type:		32-bit Int

		Default:		4

osd pg layout

		Description:		Placement Group bits ? per OSD?

		Type:		32-bit Int

		Default:		2

osd min rep

		Description:		Need a description.

		Type:		32-bit Int

		Default:		1

osd max rep

		Description:		Need a description.

		Type:		32-bit Int

		Default:		10

osd min raid width

		Description:		The minimum RAID width.

		Type:		32-bit Int

		Default:		3

osd max raid width

		Description:		The maximum RAID width.

		Type:		32-bit Int

		Default:		2

osd pool default crush rule

		Description:		

		Type:		32-bit Int

		Default:		0

osd pool default size

		Description:		

		Type:		32-bit Int

		Default:		2

osd pool default pg num

		Description:		

		Type:		32-bit Int

		Default:		8

osd pool default pgp num

		Description:		

		Type:		32-bit Int

		Default:		8

osd map cache max

		Description:		

		Type:		32-bit Int

		Default:		250

osd map message max

		Description:		max maps per MOSDMap message

		Type:		32-bit Int

		Default:		100

osd op threads

		Description:		0 == no threading

		Type:		32-bit Int

		Default:		2

osd disk threads

		Description:		

		Type:		32-bit Int

		Default:		1

osd recovery threads

		Description:		

		Type:		32-bit Int

		Default:		1

osd recover clone overlap

		Description:		preserve clone overlap during rvry/migrat

		Type:		Boolean

		Default:		false

osd backfill scan min

		Description:		

		Type:		32-bit Int

		Default:		64

osd backfill scan max

		Description:		

		Type:		32-bit Int

		Default:		512

osd op thread timeout

		Description:		

		Type:		32-bit Int

		Default:		30

osd backlog thread timeout

		Description:		

		Type:		32-bit Int

		Default:		60*60*1

osd recovery thread timeout

		Description:		

		Type:		32-bit Int

		Default:		30

osd snap trim thread timeout

		Description:		

		Type:		32-bit Int

		Default:		60*60*1

osd scrub thread timeout

		Description:		

		Type:		32-bit Int

		Default:		60

osd scrub finalize thread timeout

		Description:		

		Type:		32-bit Int

		Default:		60*10

osd remove thread timeout

		Description:		

		Type:		32-bit Int

		Default:		60*60

osd command thread timeout

		Description:		

		Type:		32-bit Int

		Default:		10*60

osd age

		Description:		

		Type:		Float

		Default:		.8

osd age time

		Description:		

		Type:		32-bit Int

		Default:		0

osd heartbeat interval

		Description:		

		Type:		32-bit Int

		Default:		1

osd mon heartbeat interval

		Description:		if no peers | ping monitor

		Type:		32-bit Int

		Default:		30

osd heartbeat grace

		Description:		

		Type:		32-bit Int

		Default:		20

osd mon report interval max

		Description:		

		Type:		32-bit Int

		Default:		120

osd mon report interval min

		Description:		pg stats | failures | up thru | boot.

		Type:		32-bit Int

		Default:		5

osd mon ack timeout

		Description:		time out a mon if it doesn’t ack stats

		Type:		32-bit Int

		Default:		30

osd min down reporters

		Description:		num OSDs needed to report a down OSD

		Type:		32-bit Int

		Default:		1

osd min down reports

		Description:		num times a down OSD must be reported

		Type:		32-bit Int

		Default:		3

osd default data pool replay window

		Description:		

		Type:		32-bit Int

		Default:		45

osd preserve trimmed log

		Description:		

		Type:		Boolean

		Default:		true

osd auto mark unfound lost

		Description:		

		Type:		Boolean

		Default:		false

osd recovery delay start

		Description:		

		Type:		Float

		Default:		15

osd recovery max active

		Description:		

		Type:		32-bit Int

		Default:		5

osd recovery max chunk

		Description:		max size of push chunk

		Type:		64-bit Int Unsigned

		Default:		1<<20

osd recovery forget lost objects

		Description:		off for now

		Type:		Boolean

		Default:		false

osd max scrubs

		Description:		

		Type:		32-bit Int

		Default:		1

osd scrub load threshold

		Description:		

		Type:		Float

		Default:		0.5

osd scrub min interval

		Description:		

		Type:		Float

		Default:		300

osd scrub max interval

		Description:		once a day

		Type:		Float

		Default:		60*60*24

osd auto weight

		Description:		

		Type:		Boolean

		Default:		false

osd class error timeout

		Description:		seconds

		Type:		Double

		Default:		60.0

osd class timeout

		Description:		seconds

		Type:		Double

		Default:		60*60.0

osd class dir

		Description:		where rados plugins are stored

		Type:		String

		Default:		$libdir/rados-classes

osd check for log corruption

		Description:		

		Type:		Boolean

		Default:		false

osd use stale snap

		Description:		

		Type:		Boolean

		Default:		false

osd rollback to cluster snap

		Description:		

		Type:		String

		Default:		“”

osd default notify timeout

		Description:		default notify timeout in seconds

		Type:		32-bit Int Unsigned

		Default:		30

osd kill backfill at

		Description:		

		Type:		32-bit Int

		Default:		0

osd min pg log entries

		Description:		num entries to keep in pg log when trimming

		Type:		32-bit Int Unsigned

		Default:		1000

osd op complaint time

		Description:		how old in secs makes op complaint-worthy

		Type:		Float

		Default:		30

osd command max records

		Description:		

		Type:		32-bit Int

		Default:		256

 © Copyright 2012, Inktank Storage, Inc..

radosgw/config.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

Configuring RADOS Gateway

Before you can start RADOS Gateway, you must modify your ceph.conf file
to include a section for RADOS Gateway You must also create an rgw.conf
file in the /etc/apache2/sites-enabled directory. The rgw.conf
file configures Apache to interact with FastCGI.

Add a RADOS GW Configuration to ceph.conf

Add the RADOS Gateway configuration to your ceph.conf file. The RADOS
Gateway configuration requires you to specify the host name where you installed
RADOS Gateway, a keyring (for use with cephx), the socket path and a log file.
For example:

[client.radosgw.gateway]
 host = {host-name}
 keyring = /etc/ceph/keyring.rados.gateway
 rgw socket path = /tmp/radosgw.sock
 log file = /var/log/ceph/radosgw.log

If you deploy Ceph with mkcephfs, manually redeploy ceph.conf to the
hosts in your cluster. For example:

cd /etc/ceph
ssh {host-name} sudo /etc/ceph/ceph.conf < ceph.conf

Create rgw.conf

Create an rgw.conf file on the host where you installed RADOS Gateway
under the /etc/apache2/sites-enabled directory.

We recommend deploying FastCGI as an external server, because allowing
Apache to manage FastCGI sometimes introduces high latency. To manage FastCGI
as an external server, use the FastCgiExternalServer directive.
See FastCgiExternalServer [http://www.fastcgi.com/drupal/node/25#FastCgiExternalServer] for details on this directive.
See Module mod_fastcgi [http://www.fastcgi.com/drupal/node/25] for general details.

FastCgiExternalServer /var/www/s3gw.fcgi -socket /tmp/radosgw.sock

Once you have configured FastCGI as an external server, you must
create the virtual host configuration within your rgw.conf file. See
Apache Virtual Host documentation [http://httpd.apache.org/docs/2.2/vhosts/] for details on <VirtualHost> format
and settings. Replace the values in brackets.

<VirtualHost *:80>
 ServerName {fqdn}
 ServerAdmin {email.address}
 DocumentRoot /var/www
</VirtualHost>

RADOS Gateway requires a rewrite rule for the Amazon S3-compatible interface.
It’s required for passing in the HTTP_AUTHORIZATION env for S3, which is
filtered out by Apache. The rewrite rule is not necessary for the OpenStack
Swift-compatible interface. Turn on the rewrite engine and add the following
rewrite rule to your Virtual Host configuration.

RewriteEngine On
RewriteRule ^/([a-zA-Z0-9-_.]*)([/]?.*) /s3gw.fcgi?page=$1¶ms=$2&%{QUERY_STRING} [E=HTTP_AUTHORIZATION:%{HTTP:Authorization},L]

Since the <VirtualHost> is running mod_fastcgi.c, you must include a
section in your <VirtualHost> configuration for the mod_fastcgi.c module.

<VirtualHost *:80>
 ...
 <IfModule mod_fastcgi.c>
 <Directory /var/www>
 Options +ExecCGI
 AllowOverride All
 SetHandler fastcgi-script
 Order allow,deny
 Allow from all
 AuthBasicAuthoritative Off
 </Directory>
 </IfModule>
 ...
</VirtualHost>

See <IfModule> Directive [http://httpd.apache.org/docs/2.2/mod/core.html#ifmodule] for additional details.

Finally, you should configure Apache to allow encoded slashes, provide paths for
log files and to trun off server signatures.

<VirtualHost *:80>
...
 AllowEncodedSlashes On
 ErrorLog /var/log/apache2/error.log
 CustomLog /var/log/apache2/access.log combined
 ServerSignature Off
</VirtualHost>

Enable the RADOS Gateway Configuration

Enable the site for rgw.conf.

sudo a2ensite rgw.conf

Disable the default site.

sudo a2dissite default

Add a RADOS GW Script

Add a s3gw.fcgi file (use the same name referenced in the first line
of rgw.conf) to /var/www. The contents of the file should include:

#!/bin/sh
exec /usr/bin/radosgw -c /etc/ceph/ceph.conf -n client.rados.gateway

Ensure that you apply execute permissions to s3gw.fcgi.

sudo chmod +x s3gw.fcgi

Generate a Keyring and Key for RADOS Gateway

You must create a keyring for the RADOS Gateway. For example:

sudo ceph-authtool --create-keyring /etc/ceph/keyring.rados.gateway
sudo chmod +r /etc/ceph/keyring.rados.gateway

Generate a key so that RADOS Gateway can identify a user name and authenticate
the user with the cluster. Then, add capabilities to the key. For example:

sudo ceph-authtool /etc/ceph/keyring.rados.gateway -n client.rados.gateway --gen-key
sudo ceph-authtool -n client.rados.gateway --cap osd 'allow rwx' --cap mon 'allow r' /etc/ceph/keyring.rados.gateway

Add to Ceph Keyring Entries

Once you have created a keyring and key for RADOS GW, add it as an entry in
the Ceph keyring. For example:

ceph -k /etc/ceph/ceph.keyring auth add client.rados.gateway -i /etc/ceph/keyring.rados.gateway

Restart Services and Start the RADOS Gateway

To ensure that all components have reloaded their configurations,
we recommend restarting your ceph and apaches services. Then,
start up the radosgw service. For example:

sudo service ceph restart
sudo service apache2 restart
sudo service radosgw start

Create a RADOS Gateway User

To use the REST interfaces, first create an initial RADOS Gateway user.
The RADOS Gateway user is not the same user as the client.rados.gateway
user, which identifies the RADOS Gateway as a user of the RADOS cluster.
The RADOS Gateway user is a user of the RADOS Gateway.

For example:

sudo radosgw-admin user create --uid="{username}" --display-name="{Display Name}"

For details on RADOS Gateway administration, see radosgw-admin.

 © Copyright 2012, Inktank Storage, Inc..

radosgw/s3/cpp.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		RADOS S3 API »

C++ S3 Examples

Setup

The following contains includes and globals that will be used in later examples:

#include "libs3.h"
#include <stdlib.h>
#include <iostream>
#include <fstream>

const char access_key[] = "ACCESS_KEY";
const char secret_key[] = "SECRET_KEY";
const char host[] = "HOST";
const char sample_bucket[] = "sample_bucket";
const char sample_key[] = "hello.txt";
const char sample_file[] = "resource/hello.txt";

S3BucketContext bucketContext =
{
 host,
 sample_bucket,
 S3ProtocolHTTP,
 S3UriStylePath,
 access_key,
 secret_key
};

S3Status responsePropertiesCallback(
 const S3ResponseProperties *properties,
 void *callbackData)
{
 return S3StatusOK;
}

static void responseCompleteCallback(
 S3Status status,
 const S3ErrorDetails *error,
 void *callbackData)
{
 return;
}

S3ResponseHandler responseHandler =
{
 &responsePropertiesCallback,
 &responseCompleteCallback
};

Creating (and Closing) a Connection

This creates a connection so that you can interact with the server.

S3_initialize("s3", S3_INIT_ALL, host);
// Do stuff...
S3_deinitialize();

Listing Owned Buckets

This gets a list of Buckets that you own.
This also prints out the bucket name, owner ID, and display name
for each bucket.

static S3Status listServiceCallback(
 const char *ownerId,
 const char *ownerDisplayName,
 const char *bucketName,
 int64_t creationDate, void *callbackData)
{
 bool *header_printed = (bool*) callbackData;
 if (!*header_printed) {
 *header_printed = true;
 printf("%-22s", " Bucket");
 printf(" %-20s %-12s", " Owner ID", "Display Name");
 printf("\n");
 printf("----------------------");
 printf(" --------------------" " ------------");
 printf("\n");
 }

 printf("%-22s", bucketName);
 printf(" %-20s %-12s", ownerId ? ownerId : "", ownerDisplayName ? ownerDisplayName : "");
 printf("\n");

 return S3StatusOK;
}

S3ListServiceHandler listServiceHandler =
{
 responseHandler,
 &listServiceCallback
};
bool header_printed = false;
S3_list_service(S3ProtocolHTTP, access_key, secret_key, host, 0, &listServiceHandler, &header_printed);

Creating a Bucket

This creates a new bucket.

S3_create_bucket(S3ProtocolHTTP, access_key, secret_key, host, sample_bucket, S3CannedAclPrivate, NULL, NULL, &responseHandler, NULL);

Listing a Bucket’s Content

This gets a list of objects in the bucket.
This also prints out each object’s name, the file size, and
last modified date.

static S3Status listBucketCallback(
 int isTruncated,
 const char *nextMarker,
 int contentsCount,
 const S3ListBucketContent *contents,
 int commonPrefixesCount,
 const char **commonPrefixes,
 void *callbackData)
{
 printf("%-22s", " Object Name");
 printf(" %-5s %-20s", "Size", " Last Modified");
 printf("\n");
 printf("----------------------");
 printf(" -----" " --------------------");
 printf("\n");

 for (int i = 0; i < contentsCount; i++) {
 char timebuf[256];
 char sizebuf[16];
 const S3ListBucketContent *content = &(contents[i]);
 time_t t = (time_t) content->lastModified;

 strftime(timebuf, sizeof(timebuf), "%Y-%m-%dT%H:%M:%SZ", gmtime(&t));
 sprintf(sizebuf, "%5llu", (unsigned long long) content->size);
 printf("%-22s %s %s\n", content->key, sizebuf, timebuf);
 }

 return S3StatusOK;
}

S3ListBucketHandler listBucketHandler =
{
 responseHandler,
 &listBucketCallback
};
S3_list_bucket(&bucketContext, NULL, NULL, NULL, 0, NULL, &listBucketHandler, NULL);

The output will look something like this:

myphoto1.jpg 251262 2011-08-08T21:35:48.000Z
myphoto2.jpg 262518 2011-08-08T21:38:01.000Z

Deleting a Bucket

Note

The Bucket must be empty! Otherwise it won’t work!

S3_delete_bucket(S3ProtocolHTTP, S3UriStylePath, access_key, secret_key, host, sample_bucket, NULL, &responseHandler, NULL);

Creating an Object (from a file)

This creates a file hello.txt.

#include <sys/stat.h>
typedef struct put_object_callback_data
{
 FILE *infile;
 uint64_t contentLength;
} put_object_callback_data;

static int putObjectDataCallback(int bufferSize, char *buffer, void *callbackData)
{
 put_object_callback_data *data = (put_object_callback_data *) callbackData;

 int ret = 0;

 if (data->contentLength) {
 int toRead = ((data->contentLength > (unsigned) bufferSize) ? (unsigned) bufferSize : data->contentLength);
 ret = fread(buffer, 1, toRead, data->infile);
 }
 data->contentLength -= ret;
 return ret;
}

put_object_callback_data data;
struct stat statbuf;
if (stat(sample_file, &statbuf) == -1) {
 fprintf(stderr, "\nERROR: Failed to stat file %s: ", sample_file);
 perror(0);
 exit(-1);
}

int contentLength = statbuf.st_size;
data.contentLength = contentLength;

if (!(data.infile = fopen(sample_file, "r"))) {
 fprintf(stderr, "\nERROR: Failed to open input file %s: ", sample_file);
 perror(0);
 exit(-1);
}

S3PutObjectHandler putObjectHandler =
{
 responseHandler,
 &putObjectDataCallback
};

S3_put_object(&bucketContext, sample_key, contentLength, NULL, NULL, &putObjectHandler, &data);

Download an Object (to a file)

This downloads a file and prints the contents.

static S3Status getObjectDataCallback(int bufferSize, const char *buffer, void *callbackData)
{
 FILE *outfile = (FILE *) callbackData;
 size_t wrote = fwrite(buffer, 1, bufferSize, outfile);
 return ((wrote < (size_t) bufferSize) ? S3StatusAbortedByCallback : S3StatusOK);
}

S3GetObjectHandler getObjectHandler =
{
 responseHandler,
 &getObjectDataCallback
};
FILE *outfile = stdout;
S3_get_object(&bucketContext, sample_key, NULL, 0, 0, NULL, &getObjectHandler, outfile);

Delete an Object

This deletes an object.

S3ResponseHandler deleteResponseHandler =
{
 0,
 &responseCompleteCallback
};
S3_delete_object(&bucketContext, sample_key, 0, &deleteResponseHandler, 0);

Change an Object’s ACL

This changes an object’s ACL to grant full control to another user.

#include <string.h>
char ownerId[] = "owner";
char ownerDisplayName[] = "owner";
char granteeId[] = "grantee";
char granteeDisplayName[] = "grantee";

S3AclGrant grants[] = {
 {
 S3GranteeTypeCanonicalUser,
 {{}},
 S3PermissionFullControl
 },
 {
 S3GranteeTypeCanonicalUser,
 {{}},
 S3PermissionReadACP
 },
 {
 S3GranteeTypeAllUsers,
 {{}},
 S3PermissionRead
 }
};

strncpy(grants[0].grantee.canonicalUser.id, ownerId, S3_MAX_GRANTEE_USER_ID_SIZE);
strncpy(grants[0].grantee.canonicalUser.displayName, ownerDisplayName, S3_MAX_GRANTEE_DISPLAY_NAME_SIZE);

strncpy(grants[1].grantee.canonicalUser.id, granteeId, S3_MAX_GRANTEE_USER_ID_SIZE);
strncpy(grants[1].grantee.canonicalUser.displayName, granteeDisplayName, S3_MAX_GRANTEE_DISPLAY_NAME_SIZE);

S3_set_acl(&bucketContext, sample_key, ownerId, ownerDisplayName, 3, grants, 0, &responseHandler, 0);

Generate Object Download URL (signed)

This generates a signed download URL that will be valid for 5 minutes.

#include <time.h>
char buffer[S3_MAX_AUTHENTICATED_QUERY_STRING_SIZE];
int64_t expires = time(NULL) + 60 * 5; // Current time + 5 minutes

S3_generate_authenticated_query_string(buffer, &bucketContext, sample_key, expires, NULL);

 © Copyright 2012, Inktank Storage, Inc..

start/quick-cephfs.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Getting Started »

Ceph FS Quick Start

To mount the Ceph FS filesystem, you must have a running Ceph cluster. You may
execute this quick start on a separate host if you have the Ceph packages and
the /etc/ceph/ceph.conf file installed with the appropriate IP address
and host name settings modified in the /etc/ceph/ceph.conf file.

Kernel Driver

Mount Ceph FS as a kernel driver.

sudo mkdir /mnt/mycephfs
sudo mount -t ceph {ip-address-of-monitor}:6789:/ /mnt/mycephfs

Filesystem in User Space (FUSE)

Mount Ceph FS as with FUSE. Replace {username} with your username.

sudo mkdir /home/{username}/cephfs
sudo ceph-fuse -m {ip-address-of-monitor}:6789 /home/{username}/cephfs

 © Copyright 2012, Inktank Storage, Inc..

radosgw/s3/perl.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		RADOS S3 API »

Perl S3 Examples

Creating a Connection

This creates a connection so that you can interact with the server.

use Amazon::S3;
my $access_key = 'put your access key here!';
my $secret_key = 'put your secret key here!';

my $conn = Amazon::S3->new({
 aws_access_key_id => $access_key,
 aws_secret_access_key => $secret_key,
 host => 'objects.dreamhost.com',
 secure => 1,
 retry => 1,
});

Listing Owned Buckets

This gets a list of Amazon::S3::Bucket [http://search.cpan.org/~tima/Amazon-S3-0.441/lib/Amazon/S3/Bucket.pm] objects that you own.
We’ll also print out the bucket name and creation date of each bucket.

my @buckets = @{$conn->buckets->{buckets} || []};
foreach my $bucket (@buckets) {
 print $bucket->bucket . "\t" . $bucket->creation_date . "\n";
}

The output will look something like this:

mahbuckat1 2011-04-21T18:05:39.000Z
mahbuckat2 2011-04-21T18:05:48.000Z
mahbuckat3 2011-04-21T18:07:18.000Z

Creating a Bucket

This creates a new bucket called my-new-bucket

my $bucket = $conn->add_bucket({ bucket => 'my-new-bucket' });

Listing a Bucket’s Content

This gets a list of hashes with info about each object in the bucket.
We’ll also print out each object’s name, the file size, and last
modified date.

my @keys = @{$bucket->list_all->{keys} || []};
foreach my $key (@keys) {
 print "$key->{key}\t$key->{size}\t$key->{last_modified}\n";
}

The output will look something like this:

myphoto1.jpg 251262 2011-08-08T21:35:48.000Z
myphoto2.jpg 262518 2011-08-08T21:38:01.000Z

Deleting a Bucket

Note

The Bucket must be empty! Otherwise it won’t work!

$conn->delete_bucket($bucket);

Forced Delete for Non-empty Buckets

Attention

not available in the Amazon::S3 [http://search.cpan.org/~tima/Amazon-S3-0.441/lib/Amazon/S3.pm] perl module

Creating an Object

This creates a file hello.txt with the string "Hello World!"

$bucket->add_key(
 'hello.txt', 'Hello World!',
 { content_type => 'text/plain' },
);

Change an Object’s ACL

This makes the object hello.txt to be publicly readable and
secret_plans.txt to be private.

$bucket->set_acl({
 key => 'hello.txt',
 acl_short => 'public-read',
});
$bucket->set_acl({
 key => 'secret_plans.txt',
 acl_short => 'private',
});

Download an Object (to a file)

This downloads the object perl_poetry.pdf and saves it in
/home/larry/documents/

$bucket->get_key_filename('perl_poetry.pdf', undef,
 '/home/larry/documents/perl_poetry.pdf');

Delete an Object

This deletes the object goodbye.txt

$bucket->delete_key('goodbye.txt');

Generate Object Download URLs (signed and unsigned)

This generates an unsigned download URL for hello.txt. This works
because we made hello.txt public by setting the ACL above.
Then this generates a signed download URL for secret_plans.txt that
will work for 1 hour. Signed download URLs will work for the time
period even if the object is private (when the time period is up, the
URL will stop working).

Note

The Amazon::S3 [http://search.cpan.org/~tima/Amazon-S3-0.441/lib/Amazon/S3.pm] module does not have a way to generate download
URLs, so we’re going to be using another module instead. Unfortunately,
most modules for generating these URLs assume that you are using Amazon,
so we’ve had to go with using a more obscure module, Muck::FS::S3 [http://search.cpan.org/~mike/Muck-0.02/]. This
should be the same as Amazon’s sample S3 perl module, but this sample
module is not in CPAN. So, you can either use CPAN to install
Muck::FS::S3 [http://search.cpan.org/~mike/Muck-0.02/], or install Amazon’s sample S3 module manually. If you go
the manual route, you can remove Muck::FS:: from the example below.

use Muck::FS::S3::QueryStringAuthGenerator;
my $generator = Muck::FS::S3::QueryStringAuthGenerator->new(
 $access_key,
 $secret_key,
 0, # 0 means use 'http'. set this to 1 for 'https'
 'objects.dreamhost.com',
);

my $hello_url = $generator->make_bare_url($bucket->bucket, 'hello.txt');
print $hello_url . "\n";

$generator->expires_in(3600); # 1 hour = 3600 seconds
my $plans_url = $generator->get($bucket->bucket, 'secret_plans.txt');
print $plans_url . "\n";

The output will look something like this:

http://objects.dreamhost.com:80/my-bucket-name/hello.txt
http://objects.dreamhost.com:80/my-bucket-name/secret_plans.txt?Signature=XXXXXXXXXXXXXXXXXXXXXXXXXXX&Expires=1316027075&AWSAccessKeyId=XXXXXXXXXXXXXXXXXXX

 © Copyright 2012, Inktank Storage, Inc..

man/8/ceph.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

ceph – ceph file system control utility

Synopsis

ceph [-m monaddr] [-w | command ...]

Description

ceph is a control utility for communicating with the monitor
cluster of a running Ceph distributed file system.

There are three basic modes of operation.

Interactive mode

To start in interactive mode, no arguments are necessary. Control-d or
‘quit’ will exit.

Watch mode

Watch mode shows cluster state changes as they occur. For example:

ceph -w

Command line mode

Finally, to send a single instruction to the monitor cluster (and wait
for a response), the command can be specified on the command line.

Options

		
-i infile

		will specify an input file to be passed along as a payload with the
command to the monitor cluster. This is only used for specific
monitor commands.

		
-o outfile

		will write any payload returned by the monitor cluster with its
reply to outfile. Only specific monitor commands (e.g. osd getmap)
return a payload.

		
-c ceph.conf, --conf=ceph.conf

		Use ceph.conf configuration file instead of the default
/etc/ceph/ceph.conf to determine monitor addresses during startup.

		
-m monaddress[:port]

		Connect to specified monitor (instead of looking through ceph.conf).

Examples

To grab a copy of the current OSD map:

ceph -m 1.2.3.4:6789 osd getmap -o osdmap

To get a dump of placement group (PG) state:

ceph pg dump -o pg.txt

Monitor commands

A more complete summary of commands understood by the monitor cluster can be found in the
wiki, at

http://ceph.com/docs/control

Availability

ceph is part of the Ceph distributed file system. Please refer to the Ceph documentation at
http://ceph.com/docs for more information.

See also

ceph(8),
mkcephfs(8)

 © Copyright 2012, Inktank Storage, Inc..

radosgw/s3/java.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		RADOS S3 API »

Java S3 Examples

Setup

The following examples may require some or all of the following java
classes to be imported:

import java.io.ByteArrayInputStream;
import java.io.File;
import java.util.List;
import com.amazonaws.auth.AWSCredentials;
import com.amazonaws.auth.BasicAWSCredentials;
import com.amazonaws.util.StringUtils;
import com.amazonaws.services.s3.AmazonS3;
import com.amazonaws.services.s3.AmazonS3Client;
import com.amazonaws.services.s3.model.Bucket;
import com.amazonaws.services.s3.model.CannedAccessControlList;
import com.amazonaws.services.s3.model.GeneratePresignedUrlRequest;
import com.amazonaws.services.s3.model.GetObjectRequest;
import com.amazonaws.services.s3.model.ObjectListing;
import com.amazonaws.services.s3.model.ObjectMetadata;
import com.amazonaws.services.s3.model.S3ObjectSummary;

Creating a Connection

This creates a connection so that you can interact with the server.

String accessKey = "insert your access key here!";
String secretKey = "insert your secret key here!";

AWSCredentials credentials = new BasicAWSCredentials(accessKey, secretKey);
AmazonS3 conn = new AmazonS3Client(credentials);
conn.setEndpoint("objects.dreamhost.com");

Listing Owned Buckets

This gets a list of Buckets that you own.
This also prints out the bucket name and creation date of each bucket.

List<Bucket> buckets = conn.listBuckets();
for (Bucket bucket : buckets) {
 System.out.println(bucket.getName() + "\t" +
 StringUtils.fromDate(bucket.getCreationDate()));
}

The output will look something like this:

mahbuckat1 2011-04-21T18:05:39.000Z
mahbuckat2 2011-04-21T18:05:48.000Z
mahbuckat3 2011-04-21T18:07:18.000Z

Creating a Bucket

This creates a new bucket called my-new-bucket

Bucket bucket = conn.createBucket("my-new-bucket");

Listing a Bucket’s Content

This gets a list of objects in the bucket.
This also prints out each object’s name, the file size, and last
modified date.

ObjectListing objects = conn.listObjects(bucket.getName());
do {
 for (S3ObjectSummary objectSummary : objects.getObjectSummaries()) {
 System.out.println(objectSummary.getKey() + "\t" +
 ObjectSummary.getSize() + "\t" +
 StringUtils.fromDate(objectSummary.getLastModified()));
 }
 objects = conn.listNextBatchOfObjects(objects);
} while (objects.isTruncated());

The output will look something like this:

myphoto1.jpg 251262 2011-08-08T21:35:48.000Z
myphoto2.jpg 262518 2011-08-08T21:38:01.000Z

Deleting a Bucket

Note

The Bucket must be empty! Otherwise it won’t work!

conn.deleteBucket(bucket.getName());

Forced Delete for Non-empty Buckets

Attention

not available

Creating an Object

This creates a file hello.txt with the string "Hello World!"

ByteArrayInputStream input = new ByteArrayInputStream("Hello World!".getBytes());
conn.putObject(bucket.getName(), "hello.txt", input, new ObjectMetadata());

Change an Object’s ACL

This makes the object hello.txt to be publicly readable, and
secret_plans.txt to be private.

conn.setObjectAcl(bucket.getName(), "hello.txt", CannedAccessControlList.PublicRead);
conn.setObjectAcl(bucket.getName(), "secret_plans.txt", CannedAccessControlList.Private);

Download an Object (to a file)

This downloads the object perl_poetry.pdf and saves it in
/home/larry/documents

conn.getObject(
 new GetObjectRequest(bucket.getName(), "perl_poetry.pdf"),
 new File("/home/larry/documents/perl_poetry.pdf")
);

Delete an Object

This deletes the object goodbye.txt

conn.deleteObject(bucket.getName(), "goodbye.txt");

Generate Object Download URLs (signed and unsigned)

This generates an unsigned download URL for hello.txt. This works
because we made hello.txt public by setting the ACL above.
This then generates a signed download URL for secret_plans.txt that
will work for 1 hour. Signed download URLs will work for the time
period even if the object is private (when the time period is up, the
URL will stop working).

Note

The java library does not have a method for generating unsigned
URLs, so the example below just generates a signed URL.

GeneratePresignedUrlRequest request = new GeneratePresignedUrlRequest(bucket.getName(), "secret_plans.txt");
System.out.println(conn.generatePresignedUrl(request));

The output will look something like this:

https://my-bucket-name.objects.dreamhost.com/secret_plans.txt?Signature=XXXXXXXXXXXXXXXXXXXXXXXXXXX&Expires=1316027075&AWSAccessKeyId=XXXXXXXXXXXXXXXXXXX

 © Copyright 2012, Inktank Storage, Inc..

dev/kernel-client-troubleshooting.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

Kernel client troubleshooting (FS)

If there is an issue with the cephfs kernel client, the most important thing is
figuring out whether the problem is with the client or the MDS. Generally,
this is easy to work out. If the kernel client broke directly, there
will be output in dmesg. Collect it and any appropriate kernel state. If
the problem is with the MDS, there will be hung requests that the client
is waiting on. Look in /sys/kernel/debug/ceph/*/ and cat the mdsc file to
get a listing of requests in progress. If one of them remains there, the
MDS has probably “forgotten” it.
We can get hints about what’s going on by dumping the MDS cache:
ceph mds tell 0 dumpcache /tmp/dump.txt

And if high logging levels are set on the MDS, that will almost certainly
hold the information we need to diagnose and solve the issue.

 © Copyright 2012, Inktank Storage, Inc..

radosgw/s3/php.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		RADOS S3 API »

PHP S3 Examples

Creating a Connection

This creates a connection so that you can interact with the server.

<?php
define('AWS_KEY', 'place access key here');
define('AWS_SECRET_KEY', 'place secret key here');
define('AWS_CANONICAL_ID', 'your DHO Username');
define('AWS_CANONICAL_NAME', 'Also your DHO Username!');
$HOST = 'objects.dreamhost.com';

// require the amazon sdk for php library
require_once 'AWSSDKforPHP/sdk.class.php';

// Instantiate the S3 class and point it at the desired host
$Connection = new AmazonS3();
$Connection->set_hostname($HOST);
$Connection->allow_hostname_override(false);

// Set the S3 class to use objects.dreamhost.com/bucket
// instead of bucket.objects.dreamhost.com
$Connection->enable_path_style();

Listing Owned Buckets

This gets a list of CFSimpleXML objects representing buckets that you
own. This also prints out the bucket name and creation date of each
bucket.

<?php
$ListResponse = $Connection->list_buckets();
$Buckets = $ListResponse->body->Buckets->Bucket;
foreach ($Buckets as $Bucket) {
 echo $Bucket->Name . "\t" . $Bucket->CreationDate . "\n";
}

The output will look something like this:

mahbuckat1 2011-04-21T18:05:39.000Z
mahbuckat2 2011-04-21T18:05:48.000Z
mahbuckat3 2011-04-21T18:07:18.000Z

Creating a Bucket

This creates a new bucket called my-new-bucket and returns a
CFResponse object.

Note

This command requires a region as the second argument,
so we use AmazonS3::REGION_US_E1, because this constant is ''

<?php
$Connection->create_bucket('my-new-bucket', AmazonS3::REGION_US_E1);

List a Bucket’s Content

This gets an array of CFSimpleXML objects representing the objects
in the bucket. This then prints out each object’s name, the file size,
and last modified date.

<?php
$ObjectsListResponse = $Connection->list_objects($bucketname);
$Objects = $ObjectsListResponse->body->Contents;
foreach ($Objects as $Object) {
 echo $Object->Key . "\t" . $Object->Size . "\t" . $Object->LastModified . "\n";
}

Note

If there are more than 1000 objects in this bucket,
you need to check $ObjectListResponse->body->isTruncated
and run again with the name of the last key listed.
Keep doing this until isTruncated is not true.

The output will look something like this if the bucket has some files:

myphoto1.jpg 251262 2011-08-08T21:35:48.000Z
myphoto2.jpg 262518 2011-08-08T21:38:01.000Z

Deleting a Bucket

This deletes the bucket called my-old-bucket and returns a
CFResponse object

Note

The Bucket must be empty! Otherwise it won’t work!

<?php
$Connection->delete_bucket('my-old-bucket');

Forced Delte for Non-empty Buckets

This will delete the bucket even if it is not empty.

<?php
$Connection->delete_bucket('my-old-bucket', 1);

Creating an Object

This creates an object hello.txt with the string "Hello World!"

<?php
$Connection->create_object('my-bucket-name', 'hello.txt', array(
 'body' => "Hello World!",
));

Change an Object’s ACL

This makes the object hello.txt to be publicly readable and
secret_plans.txt to be private.

<?php
$Connection->set_object_acl('my-bucket-name', 'hello.txt', AmazonS3::ACL_PUBLIC);
$Connection->set_object_acl('my-bucket-name', 'secret_plans.txt', AmazonS3::ACL_PRIVATE);

Delete an Object

This deletes the object goodbye.txt

<?php
$Connection->delete_object('my-bucket-name', 'goodbye.txt');

Download an Object (to a file)

This downloads the object poetry.pdf and saves it in
/home/larry/documents/

<?php
$FileHandle = fopen('/home/larry/documents/poetry.pdf', 'w+');
$Connection->get_object('my-bucket-name', 'poetry.pdf', array(
 'fileDownload' => $FileHandle,
));

Generate Object Download URLs (signed and unsigned)

This generates an unsigned download URL for hello.txt.
This works because we made hello.txt public by setting
the ACL above. This then generates a signed download URL
for secret_plans.txt that will work for 1 hour.
Signed download URLs will work for the time period even
if the object is private (when the time period is up,
the URL will stop working).

<?php
my $plans_url = $Connection->get_object_url('my-bucket-name', 'hello.txt');
echo $plans_url . "\n";
my $secret_url = $Connection->get_object_url('my-bucket-name', 'secret_plans.txt', '1 hour');
echo $secret_url . "\n";

The output of this will look something like:

http://objects.dreamhost.com/my-bucket-name/hello.txt
http://objects.dreamhost.com/my-bucket-name/secret_plans.txt?Signature=XXXXXXXXXXXXXXXXXXXXXXXXXXX&Expires=1316027075&AWSAccessKeyId=XXXXXXXXXXXXXXXXXXX

 © Copyright 2012, Inktank Storage, Inc..

man/8/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

Section 8, system administration commands

		ceph – ceph file system control utility

		ceph-authtool – ceph keyring manipulation tool

		ceph-clsinfo – show class object information

		ceph-conf – ceph conf file tool

		ceph-debugpack – ceph debug packer utility

		ceph-dencoder – ceph encoder/decoder utility

		ceph-fuse – FUSE-based client for ceph

		ceph-mds – ceph metadata server daemon

		ceph-mon – ceph monitor daemon

		ceph-osd – ceph object storage daemon

		ceph-rbdnamer – udev helper to name RBD devices

		ceph-run – restart daemon on core dump

		ceph-syn – ceph synthetic workload generator

		cephfs – ceph file system options utility

		crushtool – CRUSH map manipulation tool

		librados-config – display information about librados

		mkcephfs – create a ceph file system

		monmaptool – ceph monitor cluster map manipulation tool

		mount.ceph – mount a ceph file system

		osdmaptool – ceph osd cluster map manipulation tool

		rados – rados object storage utility

		radosgw – rados REST gateway

		radosgw-admin – rados REST gateway user administration utility

		rbd – manage rados block device (RBD) images

 © Copyright 2012, Inktank Storage, Inc..

config-cluster/mon-config-ref.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Configuration »

 		Ceph Configuration Files »

Monitor Config Reference

mon data

		Description:		

		Type:		String

		Default:		“”

mon sync fs threshold

		Description:		sync when writing this many objects; 0 to disable.

		Type:		32-bit Integer

		Default:		5

mon tick interval

		Description:		

		Type:		32-bit Integer

		Default:		5

mon subscribe interval

		Description:		

		Type:		Double

		Default:		300

mon osd auto mark in

		Description:		mark any booting osds ‘in’

		Type:		Boolean

		Default:		false

mon osd auto mark auto out in

		Description:		mark booting auto-marked-out osds ‘in’

		Type:		Boolean

		Default:		true

mon osd auto mark new in

		Description:		mark booting new osds ‘in’

		Type:		Boolean

		Default:		true

mon osd down out interval

		Description:		seconds

		Type:		32-bit Integer

		Default:		300

mon lease

		Description:		lease interval

		Type:		Float

		Default:		5

mon lease renew interval

		Description:		on leader | to renew the lease

		Type:		Float

		Default:		3

mon lease ack timeout

		Description:		on leader | if lease isn’t acked by all peons

		Type:		Float

		Default:		10.0

mon clock drift allowed

		Description:		allowed clock drift between monitors

		Type:		Float

		Default:		.050

mon clock drift warn backoff

		Description:		exponential backoff for clock drift warnings

		Type:		Float

		Default:		5

mon accept timeout

		Description:		on leader | if paxos update isn’t accepted

		Type:		Float

		Default:		10.0

mon pg create interval

		Description:		no more than every 30s

		Type:		Float

		Default:		30.0

mon pg stuck threshold

		Description:		number of seconds after which pgs can be considered

		Type:		32-bit Integer

		Default:		300

mon osd full ratio

		Description:		what % full makes an OSD “full”

		Type:		Float

		Default:		.95

mon osd nearfull ratio

		Description:		what % full makes an OSD near full

		Type:		Float

		Default:		.85

mon globalid prealloc

		Description:		how many globalids to prealloc

		Type:		32-bit Integer

		Default:		100

mon osd report timeout

		Description:		grace period before declaring unresponsive OSDs dead

		Type:		32-bit Integer

		Default:		900

mon force standby active

		Description:		should mons force standby-replay mds to be active

		Type:		Boolean

		Default:		true

mon min osdmap epochs

		Description:		

		Type:		32-bit Integer

		Default:		500

mon max pgmap epochs

		Description:		

		Type:		32-bit Integer

		Default:		500

mon max log epochs

		Description:		

		Type:		32-bit Integer

		Default:		500

mon probe timeout

		Description:		

		Type:		Double

		Default:		2.0

mon slurp timeout

		Description:		

		Type:		Double

		Default:		10.0

 © Copyright 2012, Inktank Storage, Inc..

man/8/mkcephfs.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

mkcephfs – create a ceph file system

Synopsis

mkcephfs [-c ceph.conf] [–mkbtrfs] [-a, –all-hosts [-k
/path/to/admin.keyring]]

Description

mkcephfs is used to create an empty Ceph file system, possibly
spanning multiple hosts. The ceph.conf file describes the composition
of the entire Ceph cluster, including which hosts are participating,
which daemons run where, and which paths are used to store file system
data or metadata.

The mkcephfs tool can be used in two ways. If -a is used, it will use
ssh and scp to connect to remote hosts on your behalf and do the setup
of the entire cluster. This is the easiest solution, but can also be
inconvenient (if you don’t have ssh to connect without prompting for
passwords) or slow (if you have a large cluster).

Alternatively, you can run each setup phase manually. First, you need
to prepare a monmap that will be shared by each node:

prepare
master# mkdir /tmp/foo
master# mkcephfs -c /etc/ceph/ceph.conf \
 --prepare-monmap -d /tmp/foo

Share the /tmp/foo directory with other nodes in whatever way is
convenient for you. On each OSD and MDS node:

osdnode# mkcephfs --init-local-daemons osd -d /tmp/foo
mdsnode# mkcephfs --init-local-daemons mds -d /tmp/foo

Collect the contents of the /tmp/foo directories back onto a single
node, and then:

master# mkcephfs --prepare-mon -d /tmp/foo

Finally, distribute /tmp/foo to all monitor nodes and, on each of
those nodes:

monnode# mkcephfs --init-local-daemons mon -d /tmp/foo

Options

		
-a, --allhosts

		Performs the necessary initialization steps on all hosts in the
cluster, executing commands via SSH.

		
-c ceph.conf, --conf=ceph.conf

		Use the given conf file instead of the default /etc/ceph/ceph.conf.

		
-k /path/to/keyring

		When -a is used, we can specify a location to copy the
client.admin keyring, which is used to administer the cluster. The
default is /etc/ceph/keyring (or whatever is specified in the
config file).

		
--mkbtrfs

		Create and mount the any btrfs file systems specified in the
ceph.conf for OSD data storage using mkfs.btrfs. The “btrfs devs”
and (if it differs from “osd data”) “btrfs path” options must be
defined.

NOTE Btrfs is still considered experimental. This option
can ease some configuration pain, but is the use of btrfs is not
required when osd data directories are mounted manually by the
adminstrator.

NOTE This option is deprecated and will be removed in a future
release.

		
--no-copy-conf

		By default, mkcephfs with -a will copy the new configuration to
/etc/ceph/ceph.conf on each node in the cluster. This option
disables that behavior.

Subcommands

The sub-commands performed during cluster setup can be run individually with

		
--prepare-monmap -d dir -c ceph.conf

		Create an initial monmap with a random fsid/uuid and store it and
the ceph.conf in dir.

		
--init-local-daemons type -d dir

		Initialize any daemons of type type on the local host using the
monmap in dir. For types osd and mds, the resulting authentication
keys will be placed in dir. For type mon, the initial data files
generated by –prepare-mon (below) are expected in dir.

		
--prepare-mon -d dir

		Prepare the initial monitor data based on the monmap, OSD, and MDS
authentication keys collected in dir, and put the result in dir.

Availability

mkcephfs is part of the Ceph distributed file system. Please refer
to the Ceph documentation at http://ceph.com/docs for more
information.

See also

ceph(8),
monmaptool(8),
osdmaptool(8),
crushtool(8)

 © Copyright 2012, Inktank Storage, Inc..

start/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

Getting Started

Welcome to Ceph! The following sections provide information that will help you
get started:

		5-minute Quick Start
		Install Debian/Ubuntu

		Add Ceph Packages

		Add a Configuration File

		Deploy the Configuration

		Start the Ceph Cluster

		Quick Start RBD

		Quick Start CephFS
		Kernel Driver

		Filesystem in User Space (FUSE)

		Get Involved

		Installing Ceph Manually

 © Copyright 2012, Inktank Storage, Inc..

install/debian.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Installation »

Installing Debian/Ubuntu Packages

You may install stable release packages (for stable deployments),
development release packages (for the latest features), or development
testing packages (for development and QA only). Do not add multiple
package sources at the same time.

Add Stable Release Packages

We build Debian and Ubuntu packages for each stable release of Ceph. These
packages are recommended for anyone deploying Ceph in a production environment.

Packages are cryptographically signed with the release.asc key.
Add our release key to your system’s list of trusted keys to avoid a
security warning:

wget -q -O- https://raw.github.com/ceph/ceph/master/keys/release.asc | sudo apt-key add -

Add our package repository to your system’s list of APT sources.
See the Debian repository [http://ceph.com/debian/dists] for a complete list of distributions
supported.

echo deb http://ceph.com/debian/ $(lsb_release -sc) main | sudo tee /etc/apt/sources.list.d/ceph.list

Add Development Release Packages

Our development process generates a new release of Ceph every 3-4 weeks.
These packages are faster-moving than the stable releases, as they get
new features integrated quickly, while still undergoing several weeks of QA
prior to release.

Packages are cryptographically signed with the release.asc key.
Add our release key to your system’s list of trusted keys to avoid a
security warning:

wget -q -O- https://raw.github.com/ceph/ceph/master/keys/release.asc | sudo apt-key add -

Add our package repository to your system’s list of APT sources.
See the Debian repository [http://ceph.com/debian/dists] for a complete list of distributions
supported.

echo deb http://ceph.com/debian-testing/ $(lsb_release -sc) main | sudo tee /etc/apt/sources.list.d/ceph.list

Add Development Testing Packages

We automatically build Debian and Ubuntu packages for current
development branches in the Ceph source code repository. These
packages are intended for developers and QA only.

Packages are cryptographically signed with the autobuild.asc key.
Add our autobuild key to your system’s list of trusted keys to avoid a
security warning:

wget -q -O- https://raw.github.com/ceph/ceph/master/keys/autobuild.asc \ | sudo apt-key add -

Add our package repository to your system’s list of APT sources, but replace {BRANCH}
with the branch you’d like to use (e.g., chef-3, wip-hack, master, stable).
We support oneiric and precise distributions.

echo deb http://gitbuilder.ceph.com/ceph-deb-$(lsb_release -sc)-x86_64-basic/ref/{BRANCH} $(lsb_release -sc) main | sudo tee /etc/apt/sources.list.d/ceph.list

Installing Packages

Once you have added either release or development packages to APT,
you should update APT’s database and install Ceph:

sudo apt-get update && sudo apt-get install ceph

 © Copyright 2012, Inktank Storage, Inc..

_static/comment-bright.png

rec/crypto.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Recommendations »

Disabling cryptography

Authentication is optional but very much recommended.

Todo

write me

 © Copyright 2012, Inktank Storage, Inc..

man/8/ceph-run.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

ceph-run – restart daemon on core dump

Synopsis

ceph-run command ...

Description

ceph-run is a simple wrapper that will restart a daemon if it exits
with a signal indicating it crashed and possibly core dumped (that is,
signals 3, 4, 5, 6, 8, or 11).

The command should run the daemon in the foreground. For Ceph daemons,
that means the -f option.

Options

None

Availability

ceph-run is part of the Ceph distributed file system. Please refer to
the Ceph documentation at http://ceph.com/docs for more information.

See also

ceph(8),
ceph-mon(8),
ceph-mds(8),
ceph-osd(8)

 © Copyright 2012, Inktank Storage, Inc..

architecture.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

Architecture of Ceph

Ceph is a distributed network storage and file system with distributed
metadata management and POSIX semantics.

RADOS is a reliable object store, used by Ceph, but also directly
accessible.

radosgw is an S3-compatible RESTful HTTP service for object
storage, using RADOS storage.

RBD is a Linux kernel feature that exposes RADOS storage as a block
device. Qemu/KVM also has a direct RBD client, that avoids the kernel
overhead.

Monitor cluster

ceph-mon is a lightweight daemon that provides a consensus for
distributed decisionmaking in a Ceph/RADOS cluster.

It also is the initial point of contact for new clients, and will hand
out information about the topology of the cluster, such as the
osdmap.

You normally run 3 ceph-mon daemons, on 3 separate physical machines,
isolated from each other; for example, in different racks or rows.

You could run just 1 instance, but that means giving up on high
availability.

You may use the same hosts for ceph-mon and other purposes.

ceph-mon processes talk to each other using a Paxos [http://en.wikipedia.org/wiki/Paxos_algorithm]-style
protocol. They discover each other via the [mon.X] mon addr fields
in ceph.conf.

Todo

What about monmap? Fact check.

Any decision requires the majority of the ceph-mon processes to be
healthy and communicating with each other. For this reason, you never
want an even number of ceph-mons; there is no unambiguous majority
subgroup for an even number.

Todo

explain monmap

RADOS

ceph-osd is the storage daemon that provides the RADOS service. It
uses ceph-mon for cluster membership, services object read/write/etc
request from clients, and peers with other ceph-osds for data
replication.

The data model is fairly simple on this level. There are multiple
named pools, and within each pool there are named objects, in a flat
namespace (no directories). Each object has both data and metadata.

The data for an object is a single, potentially big, series of
bytes. Additionally, the series may be sparse, it may have holes that
contain binary zeros, and take up no actual storage.

The metadata is an unordered set of key-value pairs. It’s semantics
are completely up to the client; for example, the Ceph filesystem uses
metadata to store file owner etc.

Todo

Verify that metadata is unordered.

Underneath, ceph-osd stores the data on a local filesystem. We
recommend using Btrfs [http://en.wikipedia.org/wiki/Btrfs], but any POSIX filesystem that has extended
attributes should work.

Todo

write about access control

Todo

explain osdmap

Todo

explain plugins (“classes”)

Ceph filesystem

The Ceph filesystem service is provided by a daemon called
ceph-mds. It uses RADOS to store all the filesystem metadata
(directories, file ownership, access modes, etc), and directs clients
to access RADOS directly for the file contents.

The Ceph filesystem aims for POSIX compatibility, except for a few
chosen differences. See Differences from POSIX.

ceph-mds can run as a single process, or it can be distributed out to
multiple physical machines, either for high availability or for
scalability.

For high availability, the extra ceph-mds instances can be standby,
ready to take over the duties of any failed ceph-mds that was
active. This is easy because all the data, including the journal, is
stored on RADOS. The transition is triggered automatically by
ceph-mon.

For scalability, multiple ceph-mds instances can be active, and they
will split the directory tree into subtrees (and shards of a single
busy directory), effectively balancing the load amongst all active
servers.

Combinations of standby and active etc are possible, for example
running 3 active ceph-mds instances for scaling, and one standby.

To control the number of active ceph-mdses, see
Resizing the metadata cluster.

Status as of 2011-09:

Multiple active ceph-mds operation is stable under normal
circumstances, but some failure scenarios may still cause
operational issues.

Todo

document standby-replay

Todo

mds.0 vs mds.alpha etc details

radosgw

radosgw is a FastCGI service that provides a RESTful [http://en.wikipedia.org/wiki/RESTful] HTTP API to
store objects and metadata. It layers on top of RADOS with its own
data formats, and maintains it’s own user database, authentication,
access control, and so on.

Rados Block Device (RBD)

In virtual machine scenarios, RBD is typically used via the rbd
network storage driver in Qemu/KVM, where the host machine uses
librbd to provide a block device service to the guest.

Alternatively, as no direct librbd support is available in Xen,
the Linux kernel can act as the RBD client and provide a real block
device on the host machine, that can then be accessed by the
virtualization. This is done with the command-line tool rbd (see
RBD setup and administration).

The latter is also useful in non-virtualized scenarios.

Internally, RBD stripes the device image over multiple RADOS objects,
each typically located on a separate ceph-osd, allowing it to perform
better than a single server could.

Client

Todo

cephfs, ceph-fuse, librados, libcephfs, librbd

Todo

Summarize how much Ceph trusts the client, for what parts (security vs reliability).

TODO

Todo

Example scenarios Ceph projects are/not suitable for

 © Copyright 2012, Inktank Storage, Inc..

ops/manage/grow/mds.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operations »

 		Managing a Ceph cluster »

 		Growing or shrinking a Ceph cluster »

Resizing the metadata cluster

Adding new MDSes

Setting up standby and standby-replay MDSes

Removing MDSes

Status as of 2011-09:

You can remove an MDS from the system by executing “ceph mds deactivate x”,
where x is numerical ID of the MDS to shut down.
Beware: shrinking the number of MDSes is not well tested.

 © Copyright 2012, Inktank Storage, Inc..

rbd/rbd-snapshot.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Block Devices »

RBD Snapshotting

One of the advanced features of RADOS block devices is that you can create
snapshots of the images to retain a history of an image’s state. Ceph supports
RBD snapshots from the rbd command, from a kernel object, from a
KVM, and from cloud solutions. Once you create snapshots of an image, you
can rollback to a snapshot, list snapshots, remove snapshots and purge
the snapshots.

Important

To use use RBD snapshots, you must have a running Ceph cluster.

Important

Generally, you should stop i/o before snapshotting an image.
If the image contains a filesystem, the filesystem should be in a
consistent state before snapshotting too.

Create Snapshot

To create a snapshot with rbd, specify the snap create option,
the pool name, the image name and the username. If you use cephx for
authentication, you must also specify a key or a secret file.

rbd --name {user-name} --keyfile=/path/to/secret --pool {pool-name} snap create --snap {snap-name} {image-name}

For example:

rbd --name client.admin --pool rbd snap create --snap foo.snapname foo

List Snapshots

To list snapshots of an image, specify the pool name, the image name, and
the username. If you use cephx for authentication, you must also
specify a key or a secret file.

rbd --name {user-name} --keyfile=/path/to/secret --pool {pool-name} snap ls {image-name}

For example:

rbd --name client.admin --pool rbd snap ls foo

Rollback Snapshot

To rollback a snapshot with rbd, specify the snap rollback option,
the pool name, the image name and the username. If you use cephx for
authentication, you must also specify a key or a secret file.

rbd --name {user-name} --keyfile=/path/to/secret --pool {pool-name} snap rollback --snap {snap-name} {image-name}

For example:

rbd --name client.admin --pool rbd snap rollback --snap foo.snapname foo

Delete a Snapshot

To delete a snapshot with rbd, specify the snap rm option,
the pool name, the image name and the username. If you use cephx for
authentication, you must also specify a key or a secret file.

rbd --name {user-name} --keyfile=/path/to/secret --pool {pool-name} snap rm --snap {snap-name} {image-name}

For example:

rbd --name client.admin --pool rbd snap rm --snap foo.snapname foo

 © Copyright 2012, Inktank Storage, Inc..

source/git.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Ceph Source Code »

Set Up Git

To check out the Ceph source code, you must have git installed
on your local host.

Install Git

To install git, execute:

sudo apt-get install git

You must also have a github account. If you do not have a
github account, go to github.com [http://github.com] and register.
Follow the directions for setting up git at
Set Up Git [http://help.github.com/linux-set-up-git].

Generate SSH Keys

You must generate SSH keys for github to clone the Ceph
repository. If you do not have SSH keys for github, execute:

ssh-keygen

Get the key to add to your github account (the following example
assumes you used the default file path):

cat .ssh/id_rsa.pub

Copy the public key.

Add the Key

Go to your your github account,
click on “Account Settings” (i.e., the ‘tools’ icon); then,
click “SSH Keys” on the left side navbar.

Click “Add SSH key” in the “SSH Keys” list, enter a name for
the key, paste the key you generated, and press the “Add key”
button.

 © Copyright 2012, Inktank Storage, Inc..

radosgw/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

RADOS Gateway

RADOS Gateway is an object storage interface built on top of librados to
provide applications with a RESTful gateway to RADOS clusters. The RADOS Gateway
supports two interfaces:

		S3-compatible: Provides block storage functionality with an interface that
is compatible with a large subset of the Amazon S3 RESTful API.

		Swift-compatible: Provides block storage functionality with an interface
that is compatible with a large subset of the OpenStack Swift API.

RADOS Gateway is a FastCGI module for interacting with librados. Since it
provides interfaces compatible with OpenStack Swift and Amazon S3, RADOS Gateway
has its own user management. RADOS Gateway can store data in the same RADOS
cluster used to store data from Ceph FS clients or RADOS block devices.
Each interface (S3 or Swift) provides its own namespace.

		Manual Install

		Configuration

		Config Reference

		S3 API

		Swift API

 © Copyright 2012, Inktank Storage, Inc..

ops/manage/grow/placement-groups.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operations »

 		Managing a Ceph cluster »

 		Growing or shrinking a Ceph cluster »

Tuning Placement Groups

Purpose

Placement groups (PGs) are shards or fragments of a logical object pool. Their function is to spread the responsibility for storing objects across the nodes of the cluster. Generally speaking, a large number of placement groups will ensure that load is spread evenly, at the expensive of tracking/management overhead. A small number of placement groups can result in non-optimal distribution of load (e.g., some OSDs with significantly more or less data than the others).

Each pool as a pg_num property that indicates the number of PGs it is fragmented into. The total number of PG copies in the system is the sum of the pg_num value times the replication factor for each pool.

Optimal total PG count

A rule of thumb is to shoot for a total PG count that is on the order of 50-100 PGs per OSD in the system. Anything within an order of magnitude of that target will do reasonably well in terms of variation between utilization. Thus, if your system have 900 OSDs, you probably want somewhere between 30,000 and 90,000 PG copies. If your replication factor is 3x, then you want your pg_num values to add to something between 10,000 and 30,000. 16,384 is a nice round number (powers of two are marginally better).

If your system tends to be underpowered, choosing a lower pg_num will ease system load at the expense of load balance.

If you expect the cluster to grow in size, you may want to choose a larger pg_num that will remain within a good range as the number of OSDs increases.

Multiple pools

If you have a single pool of objects in the system, choosing pg_num is easy:

total_pg_copies = num_osds * 100
total_pgs = total_pg_copes / replication_factor
lone_pool_pg_num = total_pgs

If you have multiple pools, you need to be a bit careful about how each pool’s pg_num value is chosen so that they add up to a reasonable total. Generally speaking, each pool’s pg_num should be roughly proportional to the number of objects you expect the pool to contain.

Splitting/merging PGs

Ceph will soon support the ability to dynamically adjust the number of PGs in a pool after it has been created. Existing PGs will be “split” into smaller fragments or “merged” into larger ones and then redistributed. Until then, the pg_num pool property can only be set when the pool is created.

 © Copyright 2012, Inktank Storage, Inc..

man/8/rbd.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

rbd – manage rados block device (RBD) images

Synopsis

rbd [-c ceph.conf] [-m monaddr] [-p | –pool pool] [
–size size] [–order bits] [command ...]

Description

rbd is a utility for manipulating rados block device (RBD) images,
used by the Linux rbd driver and the rbd storage driver for Qemu/KVM.
RBD images are simple block devices that are striped over objects and
stored in a RADOS object store. The size of the objects the image is
striped over must be a power of two.

Options

		
-c ceph.conf, --conf ceph.conf

		Use ceph.conf configuration file instead of the default /etc/ceph/ceph.conf to
determine monitor addresses during startup.

		
-m monaddress[:port]

		Connect to specified monitor (instead of looking through ceph.conf).

		
-p pool, --pool pool

		Interact with the given pool. Required by most commands.

Parameters

		
--size size-in-mb

		Specifies the size (in megabytes) of the new rbd image.

		
--order bits

		Specifies the object size expressed as a number of bits, such that
the object size is 1 << order. The default is 22 (4 MB).

		
--snap snap

		Specifies the snapshot name for the specific operation.

		
--user username

		Specifies the username to use with the map command.

		
--secret filename

		Specifies a file containing the secret to use with the map command.

Commands

		ls [pool-name]

		Will list all rbd images listed in the rbd_directory object.

		info [image-name]

		Will dump information (such as size and order) about a specific rbd image.

		create [image-name]

		Will create a new rbd image. You must also specify the size via –size.

		clone [parent-snapname] [image-name]

		Will create a clone (copy-on-write child) of the parent snapshot.
Size and object order will be identical to parent image unless specified.

		resize [image-name]

		Resizes rbd image. The size parameter also needs to be specified.

		rm [image-name]

		Deletes an rbd image (including all data blocks). If the image has
snapshots, this fails and nothing is deleted.

		export [image-name] [dest-path]

		Exports image to dest path.

		import [path] [dest-image]

		Creates a new image and imports its data from path.

		cp [src-image] [dest-image]

		Copies the content of a src-image into the newly created dest-image.

		mv [src-image] [dest-image]

		Renames an image. Note: rename across pools is not supported.

		snap ls [image-name]

		Dumps the list of snapshots inside a specific image.

		snap create [image-name]

		Creates a new snapshot. Requires the snapshot name parameter specified.

		snap rollback [image-name]

		Rollback image content to snapshot. This will iterate through the entire blocks
array and update the data head content to the snapshotted version.

		snap rm [image-name]

		Removes the specified snapshot.

		snap purge [image-name]

		Removes all snapshots from an image.

		map [image-name]

		Maps the specified image to a block device via the rbd kernel module.

		unmap [device-path]

		Unmaps the block device that was mapped via the rbd kernel module.

		showmapped

		Show the rbd images that are mapped via the rbd kernel module.

Image name

In addition to using the –pool and the –snap options, the image name can include both
the pool name and the snapshot name. The image name format is as follows:

[pool/]image-name[@snap]

Thus an image name that contains a slash character (‘/’) requires specifying the pool
name explicitly.

Examples

To create a new rbd image that is 100 GB:

rbd -p mypool create myimage --size 102400

or alternatively:

rbd create mypool/myimage --size 102400

To use a non-default object size (8 MB):

rbd create mypool/myimage --size 102400 --order 23

To delete an rbd image (be careful!):

rbd rm mypool/myimage

To create a new snapshot:

rbd snap create mypool/myimage@mysnap

To create a copy-on-write clone of a snapshot:

rbd clone myimage@mysnap cloneimage

To delete a snapshot:

rbd snap rm mypool/myimage@mysnap

To map an image via the kernel with cephx enabled:

rbd map myimage --user admin --secret secretfile

To unmap an image:

rbd unmap /dev/rbd0

Availability

rbd is part of the Ceph distributed file system. Please refer to
the Ceph documentation at http://ceph.com/docs for more information.

See also

ceph(8),
rados(8)

 © Copyright 2012, Inktank Storage, Inc..

man/8/radosgw-admin.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

radosgw-admin – rados REST gateway user administration utility

Synopsis

radosgw-admin command [options ...]

Description

radosgw-admin is a RADOS gateway user administration utility. It
allows creating and modifying users.

Commands

command can be one of the following options:

		user create

		Create a new user

		user modify

		Modify a user

		user info

		Display information of a user, and any potentially available
subusers and keys

		user rm

		Remove a user

		subuser create

		Create a new subuser (primarily useful for clients using the Swift API)

		subuser modify

		Modify a subuser

		subuser rm

		Remove a subuser

		bucket list

		List all buckets

		bucket unlink

		Remove a bucket

		key create

		Create an access key

		key rm

		Remove an access key

		policy

		Display bucket/object policy

		log show

		Show the log of a bucket (with a specified date)

		usage show

		Show the usage information (with optional user and date range)

		usage trim

		Trim usage information (with optional user and date range)

Options

		
-c ceph.conf, --conf=ceph.conf

		Use ceph.conf configuration file instead of the default
/etc/ceph/ceph.conf to determine monitor addresses during
startup.

		
-m monaddress[:port]

		Connect to specified monitor (instead of looking through ceph.conf).

		
--uid=uid

		The radosgw user ID.

		
--secret=secret

		The secret associated with a given key.

		
--display-name=name

		Configure the display name of the user.

		
--email=email

		The e-mail address of the user

		
--bucket=bucket

		Specify the bucket name.

		
--object=object

		Specify the object name.

		
--date=yyyy-mm-dd

		The date needed for some commands

		
--start-date=yyyy-mm-dd

		The start date needed for some commands

		
--end-date=yyyy-mm-dd

		The end date needed for some commands

		
--auth-uid=auid

		The librados auid

Examples

Generate a new user:

$ radosgw-admin user create --display-name="johnny rotten" --uid=johnny
{ "user_id": "johnny",
 "rados_uid": 0,
 "display_name": "johnny rotten",
 "email": "",
 "suspended": 0,
 "subusers": [],
 "keys": [
 { "user": "johnny",
 "access_key": "TCICW53D9BQ2VGC46I44",
 "secret_key": "tfm9aHMI8X76L3UdgE+ZQaJag1vJQmE6HDb5Lbrz"}],
 "swift_keys": []}

Remove a user:

$ radosgw-admin user rm --uid=johnny

Remove a bucket:

$ radosgw-admin bucket unlink --bucket=foo

Show the logs of a bucket from April 1st, 2012:

$ radosgw-admin log show --bucket=foo --date=2012=04-01

Show usage information for user from March 1st to (but not including) April 1st, 2012:

$ radosgw-admin usage show --uid=johnny \
 --start-date=2012-03-01 --end-date=2012-04-01

Show only summary of usage information for all users:

$ radosgw-admin usage show --show-log-entries=false

Trim usage information for user until March 1st, 2012:

$ radosgw-admin usage trim --uid=johnny --end-date=2012-04-01

Availability

radosgw-admin is part of the Ceph distributed file system. Please
refer to the Ceph documentation at http://ceph.com/docs for more
information.

See also

ceph(8)

 © Copyright 2012, Inktank Storage, Inc..

radosgw/s3/ruby.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		RADOS S3 API »

Ruby S3 Examples

Creating a Connection

This creates a connection so that you can interact with the server.

AWS::S3::Base.establish_connection!(
 :server => 'objects.dreamhost.com',
 :use_ssl => true,
 :access_key_id => 'my-access-key',
 :secret_access_key => 'my-secret-key'
)

Listing Owned Buckets

This gets a list of AWS::S3::Bucket [http://amazon.rubyforge.org/doc/] objects that you own.
This also prints out the bucket name and creation date of each bucket.

AWS::S3::Service.buckets.each do |bucket|
 puts "#{bucket.name}\t#{bucket.creation_date}"
end

The output will look something like this:

mahbuckat1 2011-04-21T18:05:39.000Z
mahbuckat2 2011-04-21T18:05:48.000Z
mahbuckat3 2011-04-21T18:07:18.000Z

Creating a Bucket

This creates a new bucket called my-new-bucket

AWS::S3::Bucket.create('my-new-bucket')

Listing a Bucket’s Content

This gets a list of hashes with the contents of each object
This also prints out each object’s name, the file size, and last
modified date.

new_bucket = AWS::S3::Bucket.find('my-new-bucket')
new_bucket.each do |object|
 puts "#{object.key}\t#{object.about['content-length']}\t#{object.about['last-modified']}"
end

The output will look something like this if the bucket has some files:

myphoto1.jpg 251262 2011-08-08T21:35:48.000Z
myphoto2.jpg 262518 2011-08-08T21:38:01.000Z

Deleting a Bucket

Note

The Bucket must be empty! Otherwise it won’t work!

AWS::S3::Bucket.delete('my-new-bucket')

Forced Delete for Non-empty Buckets

AWS::S3::Bucket.delete('my-new-bucket', :force => true)

Creating an Object

This creates a file hello.txt with the string "Hello World!"

AWS::S3::S3Object.store(
 'hello.txt',
 'Hello World!',
 'my-new-bucket',
 :content_type => 'text/plain'
)

Change an Object’s ACL

This makes the object hello.txt to be publicly readable, and secret_plans.txt
to be private.

policy = AWS::S3::S3Object.acl('hello.txt', 'my-new-bucket')
policy.grants = [AWS::S3::ACL::Grant.grant(:public_read)]
AWS::S3::S3Object.acl('hello.txt', 'my-new-bucket', policy)

policy = AWS::S3::S3Object.acl('secret_plans.txt', 'my-new-bucket')
policy.grants = []
AWS::S3::S3Object.acl('secret_plans.txt', 'my-new-bucket', policy)

Download an Object (to a file)

This downloads the object poetry.pdf and saves it in
/home/larry/documents/

open('/home/larry/documents/poetry.pdf', 'w') do |file|
 AWS::S3::S3Object.stream('poetry.pdf', 'my-new-bucket') do |chunk|
 file.write(chunk)
 end
end

Delete an Object

This deletes the object goodbye.txt

AWS::S3::S3Object.delete('goodbye.txt', 'my-new-bucket')

Generate Object Download URLs (signed and unsigned)

This generates an unsigned download URL for hello.txt. This works
because we made hello.txt public by setting the ACL above.
This then generates a signed download URL for secret_plans.txt that
will work for 1 hour. Signed download URLs will work for the time
period even if the object is private (when the time period is up, the
URL will stop working).

puts AWS::S3::S3Object.url_for(
 'hello.txt',
 'my-new-bucket',
 :authenticated => false
)

puts AWS::S3::S3Object.url_for(
 'secret_plans.txt',
 'my-new-bucket',
 :expires_in => 60 * 60
)

The output of this will look something like:

http://objects.dreamhost.com/my-bucket-name/hello.txt
http://objects.dreamhost.com/my-bucket-name/secret_plans.txt?Signature=XXXXXXXXXXXXXXXXXXXXXXXXXXX&Expires=1316027075&AWSAccessKeyId=XXXXXXXXXXXXXXXXXXX

 © Copyright 2012, Inktank Storage, Inc..

appendix/differences-from-posix.html

 Navigation

 		
 index

 		
 modules |

 		
 previous |

 		Ceph documentation »

 		Appendices »

1. Differences from POSIX

Todo

delete http://ceph.com/wiki/Differences_from_POSIX

Ceph does have a few places where it diverges from strict POSIX semantics for various reasons:

		Sparse files propagate incorrectly to tools like df. They will only
use up the required space, but in df will increase the “used” space
by the full file size. We do this because actually keeping track of
the space a large, sparse file uses is very expensive.

		In shared simultaneous writer situations, a write that crosses
object boundaries is not necessarily atomic. This means that you
could have writer A write “aa|aa” and writer B write “bb|bb”
simultaneously (where | is the object boundary), and end up with
“aa|bb” rather than the proper “aa|aa” or “bb|bb”.

 © Copyright 2012, Inktank Storage, Inc..

install/openstack.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Installation »

Installing OpenStack

Installing OpenStack with DevStack

To install OpenStack with DevStack [http://devstack.org/], you should ensure that your
packages are up to date and properly upgraded.

Tip

For Ubuntu 12.04 installations, ensure that you updgrade
your distribution to the latest release.

For example:

sudo apt-get update && sudo apt-get upgrade && sudo apt-get dist-upgrade

Once you have completed the updates, reboot your system.

Clone the DevStack repository and install OpenStack.

git clone git://github.com/openstack-dev/devstack.git
cd devstack; ./stack.sh

The installer will prompt you to enter passwords for the various
components. Follow the installer to take appropriate notes.

Installing OpenStack with Chef

Coming Soon!

Installing OpenStack with Crowbar

Coming Soon!

 © Copyright 2012, Inktank Storage, Inc..

_images/graphviz-bbafdadb71ca4b816baf0a2afa3a2a3e7fcc9969.png

install/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

Installation

Storage clusters are the foundation of the Ceph system. Ceph storage hosts
provide object storage. Clients access the Ceph storage cluster directly from
an application (using librados), over an object storage protocol such as
Amazon S3 or OpenStack Swift (using radosgw), or with a block device
(using rbd). To begin using Ceph, you must first set up a storage cluster.

You may deploy Ceph with our mkcephfs bootstrap utility for development
and test environments. For production environments, we recommend deploying
Ceph with the Chef cloud management tool.

If your deployment uses OpenStack, you will also need to install OpenStack.

The following sections provide guidance for installing components used with
Ceph:

		Hardware Recommendations
		Minimum Hardware Recommendations

		Production Cluster Example

		Installing Debian/Ubuntu Packages
		Add Stable Release Packages

		Add Development Release Packages

		Add Development Testing Packages

		Installing Packages

		Installing RPM Packages

		Installing Chef
		Create a chef User

		Generate SSH Keys for Chef Clients

		Installing Ruby

		Installing Chef and Chef Server on a Server

		Install Chef on all Remaining Hosts

		Configuring Knife

		Add a Cookbook Path

		Copy validation.pem to Nodes

		Run chef-client on each Chef Node

		Verify Nodes

		Installing OpenStack
		Installing OpenStack with DevStack

		Installing OpenStack with Chef

		Installing OpenStack with Crowbar

 © Copyright 2012, Inktank Storage, Inc..

dev/perf_counters.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

Perf counters

The perf counters provide generic internal infrastructure for gauges and counters. The counted values can be both integer and float. There is also an “average” type (normally float) that combines a sum and num counter which can be divided to provide an average.

The intention is that this data will be collected and aggregated by a tool like collectd or statsd and fed into a tool like graphite for graphing and analysis.

Access

The perf counter data is accessed via the admin socket. For example:

ceph --admin-daemon /var/run/ceph/ceph-osd.0.asok perf schema
ceph --admin-daemon /var/run/ceph/ceph-osd.0.asok perf dump

Collections

The values are grouped into named collections, normally representing a subsystem or an instance of a subsystem. For example, the internal throttle mechanism reports statistics on how it is throttling, and each instance is named something like:

throttle-msgr_dispatch_throttler-hbserver
throttle-msgr_dispatch_throttler-client
throttle-filestore_bytes
...

Schema

The perf schema command dumps a json description of which values are available, and what their type is. Each named value as a type bitfield, with the following bits defined.

		bit
		meaning

		1
		floating point value

		2
		unsigned 64-bit integer value

		4
		average (sum + count pair)

		8
		counter (vs gauge)

Every value with have either bit 1 or 2 set to indicate the type (float or integer). If bit 8 is set (counter), the reader may want to subtract off the previously read value to get the delta during the previous interval.

If bit 4 is set (average), there will be two values to read, a sum and a count. If it is a counter, the average for the previous interval would be sum delta (since the previous read) divided by the count delta. Alternatively, dividing the values outright would provide the lifetime average value. Normally these are used to measure latencies (number of requests and a sum of request latencies), and the average for the previous interval is what is interesting.

Here is an example of the schema output:

{
 "throttle-msgr_dispatch_throttler-hbserver" : {
 "get_or_fail_fail" : {
 "type" : 10
 },
 "get_sum" : {
 "type" : 10
 },
 "max" : {
 "type" : 10
 },
 "put" : {
 "type" : 10
 },
 "val" : {
 "type" : 10
 },
 "take" : {
 "type" : 10
 },
 "get_or_fail_success" : {
 "type" : 10
 },
 "wait" : {
 "type" : 5
 },
 "get" : {
 "type" : 10
 },
 "take_sum" : {
 "type" : 10
 },
 "put_sum" : {
 "type" : 10
 }
 },
 "throttle-msgr_dispatch_throttler-client" : {
 "get_or_fail_fail" : {
 "type" : 10
 },
 "get_sum" : {
 "type" : 10
 },
 "max" : {
 "type" : 10
 },
 "put" : {
 "type" : 10
 },
 "val" : {
 "type" : 10
 },
 "take" : {
 "type" : 10
 },
 "get_or_fail_success" : {
 "type" : 10
 },
 "wait" : {
 "type" : 5
 },
 "get" : {
 "type" : 10
 },
 "take_sum" : {
 "type" : 10
 },
 "put_sum" : {
 "type" : 10
 }
 }
}

Dump

The actual dump is similar to the schema, except that average values are grouped. For example:

{
 "throttle-msgr_dispatch_throttler-hbserver" : {
 "get_or_fail_fail" : 0,
 "get_sum" : 0,
 "max" : 104857600,
 "put" : 0,
 "val" : 0,
 "take" : 0,
 "get_or_fail_success" : 0,
 "wait" : {
 "avgcount" : 0,
 "sum" : 0
 },
 "get" : 0,
 "take_sum" : 0,
 "put_sum" : 0
 },
 "throttle-msgr_dispatch_throttler-client" : {
 "get_or_fail_fail" : 0,
 "get_sum" : 82760,
 "max" : 104857600,
 "put" : 2637,
 "val" : 0,
 "take" : 0,
 "get_or_fail_success" : 0,
 "wait" : {
 "avgcount" : 0,
 "sum" : 0
 },
 "get" : 2637,
 "take_sum" : 0,
 "put_sum" : 82760
 }
}

 © Copyright 2012, Inktank Storage, Inc..

init/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

Operating a Cluster

The ceph process provides functionality to start, restart, and
stop your Ceph cluster. Each time you execute ceph, you must specify at
least one option and one command. You may also specify a daemon type or a daemon
instance. For most newer Debian/Ubuntu distributions, you may use the following
syntax:

sudo service ceph [options] [commands] [daemons]

For older distributions, you may wish to use the /etc/init.d/ceph path:

sudo /etc/init.d/ceph [options] [commands] [daemons]

The ceph options include:

		Option
		Shortcut
		Description

		--verbose
		-v
		Use verbose logging.

		--valgrind
		N/A
		(Developers only) Use Valgrind [http://www.valgrind.org/] debugging.

		--allhosts
		-a
		Execute on all hosts in ceph.conf.
Otherwise, it only executes on localhost.

		--restart
		N/A
		Automatically restart daemon if it core dumps.

		--norestart
		N/A
		Don’t restart a daemon if it core dumps.

		--conf
		-c
		Use an alternate configuration file.

The ceph commands include:

		Command
		Description

		start
		Start the daemon(s).

		stop
		Stop the daemon(s).

		forcestop
		Force the daemon(s) to stop. Same as kill -9

		killall
		Kill all daemons of a particular type.

		cleanlogs
		Cleans out the log directory.

		cleanalllogs
		Cleans out everything in the log directory.

The ceph daemons include the daemon types:

		mon

		osd

		mds

The ceph daemons may also specify a specific instance:

sudo /etc/init.d/ceph -a start osd.0

Where osd.0 is the first OSD in the cluster.

See Operations for more detailed information.

 © Copyright 2012, Inktank Storage, Inc..

dev/placement-group.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

PG (Placement Group) notes

Miscellaneous copy-pastes from emails, when this gets cleaned up it
should move out of /dev.

Overview

PG = “placement group”. When placing data in the cluster, objects are
mapped into PGs, and those PGs are mapped onto OSDs. We use the
indirection so that we can group objects, which reduces the amount of
per-object metadata we need to keep track of and processes we need to
run (it would be prohibitively expensive to track eg the placement
history on a per-object basis). Increasing the number of PGs can
reduce the variance in per-OSD load across your cluster, but each PG
requires a bit more CPU and memory on the OSDs that are storing it. We
try and ballpark it at 100 PGs/OSD, although it can vary widely
without ill effects depending on your cluster. You hit a bug in how we
calculate the initial PG number from a cluster description.

There are a couple of different categories of PGs; the 6 that exist
(in the original emailer’s ceph -s output) are “local” PGs which
are tied to a specific OSD. However, those aren’t actually used in a
standard Ceph configuration.

Mapping algorithm (simplified)

> How does the Object->PG mapping look like, do you map more than one object on

> one PG, or do you sometimes map an object to more than one PG? How about the

> mapping of PGs to OSDs, does one PG belong to exactly one OSD?

>

> Does one PG represent a fixed amount of storage space?

Many objects map to one PG.

Each object maps to exactly one PG.

One PG maps to a single list of OSDs, where the first one in the list
is the primary and the rest are replicas.

Many PGs can map to one OSD.

A PG represents nothing but a grouping of objects; you configure the
number of PGs you want (see
http://ceph.com/wiki/Changing_the_number_of_PGs), number of
OSDs * 100 is a good starting point, and all of your stored objects
are pseudo-randomly evenly distributed to the PGs. So a PG explicitly
does NOT represent a fixed amount of storage; it represents 1/pg_num
‘th of the storage you happen to have on your OSDs.

Ignoring the finer points of CRUSH and custom placement, it goes
something like this in pseudocode:

locator = object_name
obj_hash = hash(locator)
pg = obj_hash % num_pg
osds_for_pg = crush(pg) # returns a list of osds
primary = osds_for_pg[0]
replicas = osds_for_pg[1:]

If you want to understand the crush() part in the above, imagine a
perfectly spherical datacenter in a vacuum ;) that is, if all osds
have weight 1.0, and there is no topology to the data center (all OSDs
are on the top level), and you use defaults, etc, it simplifies to
consistent hashing; you can think of it as:

def crush(pg):
 all_osds = ['osd.0', 'osd.1', 'osd.2', ...]
 result = []
 # size is the number of copies; primary+replicas
 while len(result) < size:
 r = hash(pg)
 chosen = all_osds[r % len(all_osds)]
 if chosen in result:
 # osd can be picked only once
 continue
 result.append(chosen)
 return result

User-visible PG States

Todo

diagram of states and how they can overlap

		creating

		the PG is still being created

		active

		requests to the PG will be processed

		clean

		all objects in the PG are replicated the correct number of times

		down

		a replica with necessary data is down, so the pg is offline

		replay

		the PG is waiting for clients to replay operations after an OSD crashed

		splitting

		the PG is being split into multiple PGs (not functional as of 2012-02)

		scrubbing

		the PG is being checked for inconsistencies

		degraded

		some objects in the PG are not replicated enough times yet

		inconsistent

		replicas of the PG are not consistent (e.g. objects are
the wrong size, objects are missing from one replica after recovery
finished, etc.)

		peering

		the PG is undergoing the Peering process

		repair

		the PG is being checked and any inconsistencies found will be repaired (if possible)

		recovering

		objects are being migrated/synchronized with replicas

		backfill

		a special case of recovery, in which the entire contents of
the PG are scanned and synchronized, instead of inferring what
needs to be transferred from the PG logs of recent operations

		incomplete

		a pg is missing a necessary period of history from its
log. If you see this state, report a bug, and try to start any
failed OSDs that may contain the needed information.

		stale

		the PG is in an unknown state - the monitors have not received
an update for it since the PG mapping changed.

		remapped

		the PG is temporarily mapped to a different set of OSDs from what
CRUSH specified

 © Copyright 2012, Inktank Storage, Inc..

source/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

Ceph Source Code

You can build Ceph from source by downloading a release or cloning the ceph
repository at github. If you intend to build Ceph from source, please see the
build pre-requisites first. Making sure you have all the pre-requisites
will save you time.

		Prerequisites
		Prerequisites for Building Ceph Source Code
		Ubuntu Requirements

		Debian

		openSUSE 11.2 (and later)

		Prerequisites for Building Ceph Documentation

		Get a Tarball

		Set Up Git
		Install Git

		Generate SSH Keys

		Add the Key

		Clone the Source
		Clone the Source

		Choose a Branch

		Build the Source
		Building Ceph

		Building Ceph Documentation

		Build a Package
		Advanced Package Tool (APT)

		RPM Package Manager

		Contributing Code

 © Copyright 2012, Inktank Storage, Inc..

_static/plus.png

radosgw/manual-install.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

Install Apache, FastCGI and RADOS GW

To install RADOS Gateway, you must install Apache and FastCGI first.

sudo apt-get update && sudo apt-get install apache2 libapache2-mod-fastcgi

Note

The Ceph community provides a slightly optimized version of the
apache2 and fastcgi packages. The material difference is that
the Ceph packages are optimized for the 100-continue HTTP response,
where the server determines if it will accept the request by first
evaluating the request header. See RFC 2616, Section 8 [http://www.w3.org/Protocols/rfc2616/rfc2616-sec8.html] for details
on 100-continue.

Enable the URL rewrite modules for Apache and FastCGI. For example:

sudo a2enmod rewrite
sudo a2enmod fastcgi

By default, the /etc/apache2/httpd.conf file is blank. Add a line for the
ServerName and provide the fully qualified domain name of the host where
you will install RADOS GW. For example:

ServerName {fqdn}

Restart Apache so that the foregoing changes take effect.

sudo service apache2 restart

Then, install RADOS Gateway. For example:

sudo apt-get install radosgw

 © Copyright 2012, Inktank Storage, Inc..

dev/logs.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

Debug logs

The main debugging tool for Ceph is the dout and derr logging functions.
Collectively, these are referred to as “dout logging.”

Dout has several log faculties, which can be set at various log
levels using the configuration management system. So it is possible to enable
debugging just for the messenger, by setting debug_ms to 10, for example.

Dout is implemented mainly in common/DoutStreambuf.cc

The dout macro avoids even generating log messages which are not going to be
used, by enclosing them in an “if” statement. What this means is that if you
have the debug level set at 0, and you run this code:

dout(20) << "myfoo() = " << myfoo() << dendl;

myfoo() will not be called here.

Unfortunately, the performance of debug logging is relatively low. This is
because there is a single, process-wide mutex which every debug output
statement takes, and every debug output statement leads to a write() system
call or a call to syslog(). There is also a computational overhead to using C++
streams to consider. So you will need to be parsimonius in your logging to get
the best performance.

Sometimes, enabling logging can hide race conditions and other bugs by changing
the timing of events. Keep this in mind when debugging.

Performance counters

Ceph daemons use performance counters to track key statistics like number of
inodes pinned. Performance counters are essentially sets of integers and floats
which can be set, incremented, and read using the PerfCounters api.

A PerfCounters object is usually associated with a single subsystem. It
contains multiple counters. This object is thread-safe because it is protected
by an internal mutex. You can create multiple PerfCounters objects.

Currently, three types of performance counters are supported: u64 counters,
float counters, and long-run floating-point average counters. These are created
by PerfCountersBuilder::add_u64, PerfCountersBuilder::add_fl, and
PerfCountersBuilder::add_fl_avg, respectively. u64 and float counters simply
provide a single value which can be updated, incremented, and read atomically.
floating-pointer average counters provide two values: the current total, and
the number of times the total has been changed. This is intended to provide a
long-run average value.

Performance counter information can be read in JSON format from the
administrative socket (admin_sock). This is implemented as a UNIX domain
socket. The Ceph peformance counter plugin for collectd shows an example of how
to access this information. Another example can be found in the unit tests for
the administrative sockets.

 © Copyright 2012, Inktank Storage, Inc..

radosgw/swift/java.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		Swift-compatible API »

Java Swift Examples

Setup

The following examples may require some or all of the following Java
classes to be imported:

import java.io.File;
import java.util.List;
import java.util.Map;
import com.rackspacecloud.client.cloudfiles.FilesClient;
import com.rackspacecloud.client.cloudfiles.FilesConstants;
import com.rackspacecloud.client.cloudfiles.FilesContainer;
import com.rackspacecloud.client.cloudfiles.FilesContainerExistsException;
import com.rackspacecloud.client.cloudfiles.FilesObject;
import com.rackspacecloud.client.cloudfiles.FilesObjectMetaData;

Create a Connection

This creates a connection so that you can interact with the server:

String username = "USERNAME";
String password = "PASSWORD";
String authUrl = "https://objects.dreamhost.com/auth";

FilesClient client = new FilesClient(username, password, authUrl);
if (!client.login()) {
 throw new RuntimeException("Failed to log in");
}

Create a Container

This creates a new container called my-new-container:

client.createContainer("my-new-container");

Create an Object

This creates an object foo.txt from the file named foo.txt in
the container my-new-container:

File file = new File("foo.txt");
String mimeType = FilesConstants.getMimetype("txt");
client.storeObject("my-new-container", file, mimeType);

Add/Update Object Metadata

This adds the metadata key-value pair key:value to the object named
foo.txt in the container my-new-container:

FilesObjectMetaData metaData = client.getObjectMetaData("my-new-container", "foo.txt");
metaData.addMetaData("key", "value");

Map<String, String> metamap = metaData.getMetaData();
client.updateObjectMetadata("my-new-container", "foo.txt", metamap);

List Owned Containers

This gets a list of Containers that you own.
This also prints out the container name.

List<FilesContainer> containers = client.listContainers();
for (FilesContainer container : containers) {
 System.out.println(" " + container.getName());
}

The output will look something like this:

mahbuckat1
mahbuckat2
mahbuckat3

List a Container’s Content

This gets a list of objects in the container my-new-container; and, it also
prints out each object’s name, the file size, and last modified date:

List<FilesObject> objects = client.listObjects("my-new-container");
for (FilesObject object : objects) {
 System.out.println(" " + object.getName());
}

The output will look something like this:

myphoto1.jpg
myphoto2.jpg

Retrieve an Object’s Metadata

This retrieves metadata and gets the MIME type for an object named foo.txt
in a container named my-new-container:

FilesObjectMetaData metaData = client.getObjectMetaData("my-new-container", "foo.txt");
String mimeType = metaData.getMimeType();

Retrieve an Object

This downloads the object foo.txt in the container my-new-container
and saves it in ./outfile.txt:

FilesObject obj;
File outfile = new File("outfile.txt");

List<FilesObject> objects = client.listObjects("my-new-container");
for (FilesObject object : objects) {
 String name = object.getName();
 if (name.equals("foo.txt")) {
 obj = object;
 obj.writeObjectToFile(outfile);
 }
}

Delete an Object

This deletes the object goodbye.txt in the container “my-new-container”:

client.deleteObject("my-new-container", "goodbye.txt");

Delete a Container

This deletes a container named “my-new-container”:

client.deleteContainer("my-new-container");

Note

The container must be empty! Otherwise it won’t work!

 © Copyright 2012, Inktank Storage, Inc..

dev/osd_internals/map_message_handling.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

 		OSD developer documentation »

Map and PG Message handling

Overview

The OSD handles routing incoming messages to PGs, creating the PG if necessary
in come cases.

PG messages generally come in two varieties:

		Peering Messages

		Ops/SubOps

There are several ways in which a message might be dropped or delayed. It is
important that the message delaying does not result in a violation of certain
message ordering requirements on the way to the relevant PG handling logic:

		Ops referring to the same object must not be reordered.

		Peering messages must not be reordered.

		Subops must not be reordered.

MOSDMap

MOSDMap messages may come from either monitors or other OSDs. Upon receipt, the
OSD must perform several tasks:

		Persist the new maps to the filestore.
Several PG operations rely on having access to maps dating back to the last
time the PG was clean.

		Update and persist the superblock.

		Update OSD state related to the current map.

		Expose new maps to PG processes via OSDService.

		Remove PGs due to pool removal.

		Queue dummy events to trigger PG map catchup.

Each PG asynchronously catches up to the currently published map during
process_peering_events before processing the event. As a result, different
PGs may have different views as to the “current” map.

One consequence of this design is that messages containing submessages from
multiple PGs (MOSDPGInfo, MOSDPGQuery, MOSDPGNotify) must tag each submessage
with the PG’s epoch as well as tagging the message as a whole with the OSD’s
current published epoch.

MOSDPGOp/MOSDPGSubOp

See OSD::dispatch_op, OSD::handle_op, OSD::handle_sub_op

MOSDPGOps are used by clients to initiate rados operations. MOSDSubOps are used
between OSDs to coordinate most non peering activities including replicating
MOSDPGOp operations.

OSD::require_same_or_newer map checks that the current OSDMap is at least
as new as the map epoch indicated on the message. If not, the message is
queued in OSD::waiting_for_osdmap via OSD::wait_for_new_map. Note, this
cannot violate the above conditions since any two messages will be queued
in order of receipt and if a message is recieved with epoch e0, a later message
from the same source must be at epoch at least e0. Note that two PGs from
the same OSD count for these purposes as different sources for single PG
messages. That is, messages from different PGs may be reordered.

MOSDPGOps follow the following process:

		OSD::handle_op: validates permissions and crush mapping.
See OSDService::handle_misdirected_op
See OSD::op_has_sufficient_caps
See OSD::require_same_or_newer_map

		OSD::enqueue_op

MOSDSubOps follow the following process:

		OSD::handle_sub_op checks that sender is an OSD

		OSD::enqueue_op

OSD::enqueue_op calls PG::queue_op which checks can_discard_request before
queueing the op in the op_queue and the PG in the OpWQ. Note, a single PG
may be in the op queue multiple times for multiple ops.

dequeue_op is then eventually called on the PG. At this time, the op is popped
off of op_queue and passed to PG::do_request, which checks that the PG map is
new enough (must_delay_op) and then processes the request.

In summary, the possible ways that an op may wait or be discarded in are:

		Wait in waiting_for_osdmap due to OSD::require_same_or_newer_map from
OSD::handle_*.

		Discarded in OSD::can_discard_op at enqueue_op.

		Wait in PG::op_waiters due to PG::must_delay_request in PG::do_request.

		Wait in PG::waiting_for_active in due_request due to !flushed.

		Wait in PG::waiting_for_active due to !active() in do_op/do_sub_op.

		Wait in PG::waiting_for_(degraded|missing) in do_op.

		Wait in PG::waiting_for_active due to scrub_block_writes in do_op

TODO: The above is not a complete list.

Peering Messages

See OSD::handle_pg_(notify|info|log|query)

Peering messages are tagged with two epochs:

		epoch_sent: map epoch at which the message was sent

		query_epoch: map epoch at which the message triggering the message was sent

These are the same in cases where there was no triggering message. We discard
a peering message if the message’s query_epoch if the PG in question has entered
a new epoch (See PG::old_peering_event, PG::queue_peering_event). Notifies,
infos, notifies, and logs are all handled as PG::RecoveryMachine events and
are wrapped by PG::queue_* by PG::CephPeeringEvts, which include the created
state machine event along with epoch_sent and query_epoch in order to
generically check PG::old_peering_message upon insertion and removal from the
queue.

Note, notifies, logs, and infos can trigger the creation of a PG. See
OSD::get_or_create_pg.

 © Copyright 2012, Inktank Storage, Inc..

man/8/crushtool.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Manual pages »

 		Section 8, system administration commands »

crushtool – CRUSH map manipulation tool

Synopsis

crushtool (-d map | -c map.txt | –build numosds
layer1 ...) [-o outfile [–clobber]]

Description

crushtool is a utility that lets you create, compile, and
decompile CRUSH map files.

CRUSH is a pseudo-random data distribution algorithm that efficiently
maps input values (typically data objects) across a heterogeneous,
hierarchically structured device map. The algorithm was originally
described in detail in the following paper (although it has evolved
some since then):

http://www.ssrc.ucsc.edu/Papers/weil-sc06.pdf

The tool has three modes of operation.

		
-c map.txt

		will compile a plaintext map.txt into a binary map file.

		
-d map

		will take the compiled map and decompile it into a plaintext source
file, suitable for editing.

		
--build numosds layer1 ...

		will create a relatively generic map with the given layer
structure. See below for examples.

Options

		
-o outfile

		will specify the output file.

		
--clobber

		will allow the tool to overwrite an existing outfile (it will normally refuse).

Building a map

The build mode will generate relatively generic hierarchical maps. The
first argument simply specifies the number of devices (leaves) in the
CRUSH hierarchy. Each layer describes how the layer (or raw devices)
preceding it should be grouped.

Each layer consists of:

name (uniform | list | tree | straw) size

The first element is the name for the elements in the layer
(e.g. “rack”). Each element’s name will be append a number to the
provided name.

The second component is the type of CRUSH bucket.

The third component is the maximum size of the bucket. If the size is
0, a single bucket will be generated that includes everything in the
preceding layer.

Example

Suppose we have 128 devices, each grouped into shelves with 4 devices
each, and 8 shelves per rack. We could create a three level hierarchy
with:

crushtool --build 128 shelf uniform 4 rack straw 8 root straw 0 -o map

To adjust the default (generic) mapping rules, we can run:

decompile
crushtool -d map -o map.txt

edit
vi map.txt

recompile
crushtool -c map.txt -o map

Availability

crushtool is part of the Ceph distributed file system. Please
refer to the Ceph documentation at http://ceph.com/docs for more
information.

See also

ceph(8),
osdmaptool(8),
mkcephfs(8)

 © Copyright 2012, Inktank Storage, Inc..

_images/ditaa-baa20651b2ce4987fcc2c1f3761368f43090c75e.png
hello, world

radosgw/s3/commons.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		RADOS S3 API »

Common Entities

Bucket and Host Name

There are two different modes of accessing the buckets. The first (preferred) method
identifies the bucket as the top-level directory in the URI.

GET /mybucket HTTP/1.1
Host: cname.domain.com

The second method identifies the bucket via a virtual bucket host name. For example:

GET / HTTP/1.1
Host: mybucket.cname.domain.com

Common Request Headers

		Request Header
		Description

		CONTENT_LENGTH
		Length of the request body.

		DATE
		Request time and date (in UTC).

		HOST
		The name of the host server.

		AUTHORIZATION
		Authorization token.

Common Response Status

		HTTP Status
		Response Code

		100
		Continue

		200
		Success

		201
		Created

		202
		Accepted

		204
		NoContent

		206
		Partial content

		304
		NotModified

		400
		InvalidArgument

		400
		InvalidDigest

		400
		BadDigest

		400
		InvalidBucketName

		400
		InvalidObjectName

		400
		UnresolvableGrantByEmailAddress

		400
		InvalidPart

		400
		InvalidPartOrder

		400
		RequestTimeout

		400
		EntityTooLarge

		403
		AccessDenied

		403
		UserSuspended

		403
		RequestTimeTooSkewed

		404
		NoSuchKey

		404
		NoSuchBucket

		404
		NoSuchUpload

		405
		MethodNotAllowed

		408
		RequestTimeout

		409
		BucketAlreadyExists

		409
		BucketNotEmpty

		411
		MissingContentLength

		412
		PreconditionFailed

		416
		InvalidRange

		422
		UnprocessableEntity

		500
		InternalError

 © Copyright 2012, Inktank Storage, Inc..

config-cluster/pools.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Configuration »

Storage Pools

Ceph stores data in ‘pools’ within the OSDs. When you first deploy a cluster
without specifying pools, Ceph uses the default pools for storing data.
To organize data into pools, see the rados [http://ceph.com/docs/master/man/8/rados/] command for details.

You can list, create, and remove pools. You can also view the pool utilization
statistics.

List Pools

To list your cluster’s pools, execute:

rados lspools

The default pools include:

		data

		metadata

		rbd

Create a Pool

To create a pool, execute:

rados mkpool {pool_name}

Remove a Pool

To remove a pool, execute:

rados rmpool {pool_name}

Show Pool Stats

To show a pool’s utilization statistics, execute:

rados df

 © Copyright 2012, Inktank Storage, Inc..

radosgw/swift/containerops.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		Swift-compatible API »

Container Operations

A container is a mechanism for storing data objects. An account may
have many containers, but container names must be unique. This API enables a
client to create a container, set access controls and metadata,
retrieve a container’s contents, and delete a container. Since this API
makes requests related to information in a particular user’s account, all
requests in this API must be authenticated unless a container’s access control
is deliberately made publicly accessible (i.e., allows anonymous requests).

Note

The Amazon S3 API uses the term ‘bucket’ to describe a data container.
When you hear someone refer to a ‘bucket’ within the Swift API, the term
‘bucket’ may be construed as the equivalent of the term ‘container.’

One facet of object storage is that it does not support hierachical paths
or directories. Instead, it supports one level consisting of one or more
containers, where each container may have objects. The RADOS Gateway’s
Swift-compatible API supports the notion of ‘psuedo-hierarchical containers,’
which is a means of using object naming to emulate a container (or directory)
hierachy without actually implementing one in the storage system. You may
name objects with pseudo-hiearchical names
(e.g., photos/buildings/empire-state.jpg), but container names cannot
contain a forward slash (/) character.

Create a Container

To create a new container, make a PUT request with the API version, account,
and the name of the new container. The container name must be unique, must not
contain a forward-slash (/) character, and should be less than 256 bytes. You
may include access control headers and metadata headers in the request. The
operation is idempotent; that is, if you make a request to create a container
that already exists, it will return with a HTTP 202 return code, but will not
create another container.

Syntax

PUT /{api version}/{account}/{container} HTTP/1.1
Host: {fqdn}
X-Auth-Token: {auth-token}
X-Container-Read: {comma-separated-uids}
X-Container-Write: {comma-separated-uids}
X-Container-Meta-{key}: {value}

Headers

X-Container-Read

		Description:		The user IDs with read permissions for the container.

		Type:		Comma-separated string values of user IDs.

		Required:		No

X-Container-Write

		Description:		The user IDs with write permissions for the container.

		Type:		Comma-separated string values of user IDs.

		Required:		No

X-Container-Meta-{key}

		Description:		A user-defined meta data key that takes an arbitrary string value.

		Type:		String

		Required:		No

HTTP Response

If a container with the same name already exists, and the user is the
container owner then the operation will succeed. Otherwise the operation
will fail.

409

		Description:		The container already exists under a different user’s ownership.

		Status Code:		BucketAlreadyExists

List a Container’s Objects

To list the objects within a container, make a GET request with the with the
API version, account, and the name of the container. You can specify query
parameters to filter the full list, or leave out the parameters to return a list
of the first 10,000 object names stored in the container.

Syntax

GET /{api version}/{container} HTTP/1.1
 Host: {fqdn}
 X-Auth-Token: {auth-token}

Parameters

format

		Description:		Defines the format of the result.

		Type:		String

		Valid Values:		json | xml

		Required:		No

prefix

		Description:		Limits the result set to objects beginning with the specified prefix.

		Type:		String

		Required:		No

marker

		Description:		Returns a list of results greater than the marker value.

		Type:		String

		Required:		No

limit

		Description:		Limits the number of results to the specified value.

		Type:		Integer

		Valid Range:		0 - 10,000

		Required:		No

delimiter

		Description:		The delimiter between the prefix and the rest of the object name.

		Type:		String

		Required:		No

path

		Description:		The pseudo-hierarchical path of the objects.

		Type:		String

		Required:		No

Response Entities

container

		Description:		The container.

		Type:		Container

object

		Description:		An object within the container.

		Type:		Container

name

		Description:		The name of an object within the container.

		Type:		String

hash

		Description:		A hash code of the object’s contents.

		Type:		String

last_modified

		Description:		The last time the object’s contents were modified.

		Type:		Date

content_type

		Description:		The type of content within the object.

		Type:		String

Update a Container’s ACLs

When a user creates a container, the user has read and write access to the
container by default. To allow other users to read a container’s contents or
write to a container, you must specifically enable the user.
You may also specify * in the X-Container-Read or X-Container-Write
settings, which effectively enables all users to either read from or write
to the container. Setting * makes the container public. That is it
enables anonymous users to either read from or write to the container.

Syntax

POST /{api version}/{account}/{container} HTTP/1.1
Host: {fqdn}
 X-Auth-Token: {auth-token}
 X-Container-Read: *
 X-Container-Write: {uid1}, {uid2}, {uid3}

Request Headers

X-Container-Read

		Description:		The user IDs with read permissions for the container.

		Type:		Comma-separated string values of user IDs.

		Required:		No

X-Container-Write

		Description:		The user IDs with write permissions for the container.

		Type:		Comma-separated string values of user IDs.

		Required:		No

Add/Update Container Metadata

To add metadata to a container, make a POST request with the API version,
account, and container name. You must have write permissions on the
container to add or update metadata.

Syntax

POST /{api version}/{account}/{container} HTTP/1.1
Host: {fqdn}
 X-Auth-Token: {auth-token}
 X-Container-Meta-Color: red
 X-Container-Meta-Taste: salty

Request Headers

X-Container-Meta-{key}

		Description:		A user-defined meta data key that takes an arbitrary string value.

		Type:		String

		Required:		No

Delete a Container

To delete a container, make a DELETE request with the API version, account,
and the name of the container. The container must be empty. If you’d like to check
if the container is empty, execute a HEAD request against the container. Once
you’ve successfully removed the container, you’ll be able to reuse the container name.

Syntax

DELETE /{api version}/{account}/{container} HTTP/1.1
Host: {fqdn}
X-Auth-Token: {auth-token}

HTTP Response

204

		Description:		The container was removed.

		Status Code:		NoContent

 © Copyright 2012, Inktank Storage, Inc..

papers.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

Academic papers

Todo

transfer content from http://ceph.com/resources/publications/ ?

 © Copyright 2012, Inktank Storage, Inc..

config-cluster/file-system-recommendations.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Configuration »

Hard Disk and File System Recommendations

Ceph aims for data safety, which means that when the application receives notice
that data was written to the disk, that data was actually written to the disk.
For old kernels (<2.6.33), disable the write cache if the journal is on a raw
disk. Newer kernels should work fine.

Use hdparm to disable write caching on the hard disk:

hdparm -W 0 /dev/hda 0

In production environments, we recommend running OSDs with an operating system
disk, and a separate disk(s) for data. If you run data and an operating system
on a single disk, create a separate partition for your data before configuring
your OSD cluster.

Ceph OSDs depend on the Extended Attributes (XATTRs) of the underlying file
system for:

		Internal object state

		Snapshot metadata

		RADOS Gateway Access Control Lists (ACLs).

Ceph OSDs rely heavily upon the stability and performance of the underlying file
system. The underlying file system must provide sufficient capacity for XATTRs.
File system candidates for Ceph include B tree and B+ tree file systems such as:

		btrfs

		XFS

If you are using ext4, mount your file system to enable XATTRs. You must also
add the following line to the [osd] section of your ceph.conf file.

filestore xattr use omap = true

Warning

XATTR limits.

The RADOS Gateway’s ACL and Ceph snapshots easily surpass the 4-kilobyte limit
for XATTRs in ext4, causing the ceph-osd process to crash. Version 0.45
or newer uses leveldb to bypass this limitation. ext4 is a poor file
system choice if you intend to deploy the RADOS Gateway or use snapshots on
versions earlier than 0.45.

Tip

Use xfs initially and btrfs when it is ready for production.

The Ceph team believes that the best performance and stability will come from
btrfs. The btrfs file system has internal transactions that keep the
local data set in a consistent state. This makes OSDs based on btrfs simple
to deploy, while providing scalability not currently available from block-based
file systems. The 64-kb XATTR limit for xfs XATTRS is enough to accommodate
RDB snapshot metadata and RADOS Gateway ACLs. So xfs is the second-choice
file system of the Ceph team in the long run, but xfs is currently more
stable than btrfs. If you only plan to use RADOS and rbd without
snapshots and without radosgw, the ext4 file system should work just fine.

 © Copyright 2012, Inktank Storage, Inc..

dev/osd_internals/index.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

OSD developer documentation

Contents

		Map and PG Message handling
		Overview

		MOSDMap

		MOSDPGOp/MOSDPGSubOp

		Peering Messages

		OSD
		Concepts

		Overview

		PG
		Concepts

		Peering Details and Gotchas

		PG Removal

 © Copyright 2012, Inktank Storage, Inc..

radosgw/swift/ruby.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		RADOS Gateway »

 		Swift-compatible API »

Ruby Swift Examples

Create a Connection

This creates a connection so that you can interact with the server:

require 'cloudfiles'
username = 'account_name:user_name'
api_key = 'your_secret_key'

conn = CloudFiles::Connection.new(
 :username => username,
 :api_key => api_key,
 :auth_url => 'http://objects.dreamhost.com/auth'
)

Create a Container

This creates a new container called my-new-container

container = conn.create_container('my-new-container')

Create an Object

This creates a file hello.txt from the file named my_hello.txt

obj = container.create_object('hello.txt')
obj.load_from_filename('./my_hello.txt')
obj.content_type = 'text/plain'

List Owned Containers

This gets a list of Containers that you own, and also prints out
the container name:

conn.containers.each do |container|
 puts container
end

The output will look something like this:

mahbuckat1
mahbuckat2
mahbuckat3

List a Container’s Contents

This gets a list of objects in the container, and prints out each
object’s name, the file size, and last modified date:

require 'date' # not necessary in the next version

container.objects_detail.each do |name, data|
 puts "#{name}\t#{data[:bytes]}\t#{data[:last_modified]}"
end

The output will look something like this:

myphoto1.jpg 251262 2011-08-08T21:35:48.000Z
myphoto2.jpg 262518 2011-08-08T21:38:01.000Z

Retrieve an Object

This downloads the object hello.txt and saves it in
./my_hello.txt:

obj = container.object('hello.txt')
obj.save_to_filename('./my_hello.txt')

Delete an Object

This deletes the object goodbye.txt:

container.delete_object('goodbye.txt')

Delete a Container

Note

The container must be empty! Otherwise the request won’t work!

container.delete_container('my-new-container')

 © Copyright 2012, Inktank Storage, Inc..

config-cluster/ceph-conf.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Configuration »

Ceph Configuration Files

When you start the Ceph service, the initialization process activates a series
of daemons that run in the background. The hosts in a typical RADOS cluster run
at least one of three processes or daemons:

		RADOS (ceph-osd)

		Monitor (ceph-mon)

		Metadata Server (ceph-mds)

Each process or daemon looks for a ceph.conf file that provides its
configuration settings. The default ceph.conf locations in sequential
order include:

		$CEPH_CONF (i.e., the path following the $CEPH_CONF environment variable)

		-c path/path (i.e., the -c command line argument)

		/etc/ceph/ceph.conf

		~/.ceph/config

		./ceph.conf (i.e., in the current working directory)

The ceph.conf file provides the settings for each Ceph daemon. Once you
have installed the Ceph packages on the OSD Cluster hosts, you need to create
a ceph.conf file to configure your OSD cluster.

Creating ceph.conf

The ceph.conf file defines:

		Cluster Membership

		Host Names

		Paths to Hosts

		Runtime Options

You can add comments to the ceph.conf file by preceding comments with
a semi-colon (;). For example:

; <--A semi-colon precedes a comment
; A comment may be anything, and always follows a semi-colon on each line.
; We recommend that you provide comments in your configuration file(s).

Configuration File Basics

The ceph.conf file configures each instance of the three common processes
in a RADOS cluster.

		Setting Scope
		Process
		Setting
		Instance Naming
		Description

		All Modules
		All
		[global]
		N/A
		Settings affect all instances of all daemons.

		RADOS
		ceph-osd
		[osd]
		Numeric
		Settings affect RADOS instances only.

		Monitor
		ceph-mon
		[mon]
		Alphanumeric
		Settings affect monitor instances only.

		Metadata Server
		ceph-mds
		[mds]
		Alphanumeric
		Settings affect MDS instances only.

Metavariables

The configuration system supports certain ‘metavariables,’ which are typically
used in [global] or process/daemon settings. If metavariables occur inside
a configuration value, Ceph expands them into a concrete value–similar to how
Bash shell expansion works.

There are a few different metavariables:

		Metavariable
		Description

		$host
		Expands to the host name of the current daemon.

		$type
		Expands to one of mds, osd, or mon, depending on the type of the current daemon.

		$id
		Expands to the daemon identifier. For osd.0, this would be 0; for mds.a, it would be a.

		$num
		Same as $id.

		$name
		Expands to $type.$id.

		$cluster
		Expands to the cluster name. Useful when running multiple clusters on the same hardware.

Global Settings

The Ceph configuration file supports a hierarchy of settings, where child
settings inherit the settings of the parent. Global settings affect all
instances of all processes in the cluster. Use the [global] setting for
values that are common for all hosts in the cluster. You can override each
[global] setting by:

		Changing the setting in a particular process type (e.g., [osd], [mon], [mds]).

		Changing the setting in a particular process (e.g., [osd.1])

Overriding a global setting affects all child processes, except those that
you specifically override. For example:

[global]
 ; Enable authentication between hosts within the cluster.
 auth supported = cephx

Process/Daemon Settings

You can specify settings that apply to a particular type of process. When you
specify settings under [osd], [mon] or [mds] without specifying a
particular instance, the setting will apply to all OSDs, monitors or metadata
daemons respectively.

For details on settings for each type of daemon,
see the following sections.

		OSD Settings

		Monitor Settings

		Metadata Server Settings

Instance Settings

You may specify settings for particular instances of an daemon. You may specify
an instance by entering its type, delimited by a period (.) and by the
instance ID. The instance ID for an OSD is always numeric, but it may be
alphanumeric for monitors and metadata servers.

[osd.1]
 ; settings affect osd.1 only.
[mon.a1]
 ; settings affect mon.a1 only.
[mds.b2]
 ; settings affect mds.b2 only.

host and addr Settings

The Hardware Recommendations section
provides some hardware guidelines for configuring the cluster. It is possible
for a single host to run multiple daemons. For example, a single host with
multiple disks or RAIDs may run one ceph-osd for each disk or RAID.
Additionally, a host may run both a ceph-mon and an ceph-osd daemon
on the same host. Ideally, you will have a host for a particular type of
process. For example, one host may run ceph-osd daemons, another host
may run a ceph-mds daemon, and other hosts may run ceph-mon daemons.

Each host has a name identified by the host setting, and a network location
(i.e., domain name or IP address) identified by the addr setting. For example:

[mon.a]
 host = hostName
 mon addr = 150.140.130.120:6789
[osd.0]
 host = hostName

Monitor Configuration

Ceph typically deploys with 3 monitors to ensure high availability should a
monitor instance crash. An odd number of monitors (3) ensures that the Paxos
algorithm can determine which version of the cluster map is the most accurate.

Note

You may deploy Ceph with a single monitor, but if the instance fails,
the lack of a monitor may interrupt data service availability.

Ceph monitors typically listen on port 6789. For example:

[mon.a]
 host = hostName
 mon addr = 150.140.130.120:6789

Example Configuration File

[global]
	auth supported = cephx

[osd]
	osd journal size = 1000
	; uncomment the following line if you are mounting with ext4
	; filestore xattr use omap = true

[mon.a]
	host = myserver01
	mon addr = 10.0.0.101:6789

[mon.b]
	host = myserver02
	mon addr = 10.0.0.102:6789

[mon.c]
	host = myserver03
	mon addr = 10.0.0.103:6789

[osd.0]
	host = myserver01

[osd.1]
	host = myserver02

[osd.2]
	host = myserver03

[mds.a]
	host = myserver01

iptables Configuration

Monitors listen on port 6789, while metadata servers and OSDs listen on the first
available port beginning at 6800. Ensure that you open port 6789 on hosts that run
a monitor daemon, and open one port beginning at port 6800 for each OSD or metadata
server that runs on the host. For example:

iptables -A INPUT -m multiport -p tcp -s 192.168.1.0/24 --dports 6789,6800:6803 -j ACCEPT

 © Copyright 2012, Inktank Storage, Inc..

dev/osd_internals/pg.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Internal developer documentation »

 		OSD developer documentation »

PG

Concepts

		Peering Interval

		See PG::start_peering_interval.
See PG::up_acting_affected.
See PG::RecoveryState::Reset

A peering interval is a maximal set of contiguous map epochs in which the
up and acting sets did not change. PG::RecoveryMachine represents a
transition from one interval to another as passing through
RecoveryState::Reset. On PG;:RecoveryState::AdvMap PG::up_acting_affected can
cause the pg to transition to Reset.

Peering Details and Gotchas

For an overview of peering, see Peering.

		PG::flushed defaults to false and is set to false in
PG::start_peering_interval. Upon transitioning to PG::RecoveryState::Started
we send a transaction through the pg op sequencer which, upon complete,
sends a FlushedEvt which sets flushed to true. The primary cannot go
active until this happens (See PG::RecoveryState::WaitFlushedPeering).
Replicas can go active but cannot serve ops (writes or reads).
This is necessary because we cannot read our ondisk state until unstable
transactions from the previous interval have cleared.

 © Copyright 2012, Inktank Storage, Inc..

ops/manage/grow/mon.html

 Navigation

 		
 index

 		
 modules |

 		
 next |

 		
 previous |

 		Ceph documentation »

 		Operations »

 		Managing a Ceph cluster »

 		Growing or shrinking a Ceph cluster »

Resizing the monitor cluster

Adding a monitor

		Initialize the new monitor’s data directory with the ceph-mon
--mkfs command. You need to provide the new monitor with three
pieces of information:

		the cluster fsid. This can come from a monmap (--monmap
</path/to/monmap>) for explicitly via --fsid <fsid>.

		one or more existing monitors to join. This can come via -m
<host1,host2,...>, a monmap (--monmap </some/path>), or
[mon.foo] sections with mon addr fields in ceph.conf.

		the monitor authentication key mon.. This should be passed
in explicitly via a keyring (--keyring </some/path>).

Any combination of the above arguments that provide the four needed
pieces of information will work. The simplest way to do this is
usually:

$ ceph mon getmap -o /tmp/monmap # provides fsid and existing monitor addrs
$ ceph auth export mon. -o /tmp/monkey # mon. auth key
$ ceph-mon -i newname --mkfs --monmap /tmp/monmap --keyring /tmp/monkey

		Start the new monitor and it will automatically join the cluster.
The daemon needs to know which address to bind to, either via
--public-addr <ip:port> or by setting mon addr in the
appropriate section of ceph.conf. For example:

$ ceph-mon -i newname --public-addr <ip:port>

		If you would like other nodes to be able to use this monitor during
their initial startup, you’ll need to adjust ceph.conf to add a
section and mon addr for the new monitor, or add it to the
existing mon host list.

Removing a monitor from a healthy cluster

If the cluster is healthy, you can do:

$ ceph mon remove $id

For example, if your cluster includes mon.a, mon.b, and mon.c, then you can remove mon.c with:

$ ceph mon remove c

Removing a monitor from an unhealthy or down cluster

The mon cluster may not be up because you have lost too many nodes to
form a quorum.

		On a surviving monitor node, find the most recent monmap:

$ ls $mon_data/monmap
1 2 accepted_pn last_committed latest

in this case it is 2.

		Copy to a temporary location and modify the monmap to remove the
node(s) you don’t want. Let’s say the map has mon.a, mon.b,
and mon.c, but only mon.a is surviving:

$ cp $mon_data/monmap/2 /tmp/foo
$ monmaptool /tmp/foo --rm b
$ monmaptool /tmp/foo --rm c

		Make sure ceph-mon isn’t running:

$ service ceph stop mon

		Inject the modified map on any surviving nodes. For example, for
mon.a:

$ ceph-mon -i a --inject-monmap /tmp/foo # for each surviving monitor

		Start the surviving monitor(s):

$ service ceph start mon # on each node with a surviving monitor

		Remove the old monitors from ceph.conf so that nobody tries to
connect to the old instances.

 © Copyright 2012, Inktank Storage, Inc..

