
Testing and Benchmarking

Deploy Configure

Test

Benchmark

Deploy Configure

Test

Benchmark

Integration Tests

Deploy Configure

Test

Benchmark

Benchmarking

Non-Functional (NF) Tests

•  Wikipedia:
“a non-functional requirement is one that specifies
criteria that can be used to judge the qualities of a
system, rather than specific behaviors”

•  For example:
– scalability, performance, reliability, etc.

•  Difficulty: qualities are subjective
– Need to figure how to quantify them so we

can objectively define validation criteria

One Possible Approach

•  Gather performance metrics
•  Test assertions over measurement data

Deploy Configure

Test

Benchmark

One Possible Approach

•  Define tests over benchmark output data
•  Validate these tests in the same way that

QA is done (e.g. in teuthology)

Deploy Configure

Test

Benchmark

Challenges

1.  Hardware non-determinism
– Docker (cgroups’ blkio/net_cls subsystems)

2.  Need a way to specify tests
– validation language (aver project @ UCSC)

- Log file
- CSV
- RDBMS
- TSDB
- ...

for
 cluster_size = *

 expect
 ceph >= (raw * 0.9)
when
 network not saturated

Implementing NF Tests for Ceph

1.  Deploy Ceph on Docker
– configure cgroups dynamically

2.  Run Ceph benchmarks
– radosbench initially

3.  Validate assertions over output
– hook aver

+ Deploy/Configure (via Chef/Ansible)
+ Tests
 - No Benchmarking
 - No Docker

Deploy Configure

Test

Benchmark

Teuthology

Alternative 1

+ Configure – Custom via ssh
+ Benchmark – Pluggable (radosbench, cosbench, etc.)
+ Small codebase
 - No Docker
 - No Deployment
 - No Testing

Deploy Configure

Test

Benchmark

Alternative 2

Our Plan (So Far)

1.  Add docker task to teuthology
– Leverage maestro-ng

2.  Using the docker task, deploy Ceph
– Adding the ability to configure cgroups

3.  Modify ceph-qa-suite/radosbench task
– Need to provide access to the bench output

4.  Create aver task in teuthology (aver wrapper)
– Check validations against benchmark output data

5.  Specify validation statements
–  scalability, availability, performance, etc.

